Skip to main content
Log in

Implementation of integral fixed-time sliding mode controller for speed regulation of PMSM servo system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Aiming at the control problem for the speed regulation system of permanent magnet synchronous motor (PMSM), an integral fixed-time sliding mode control algorithm with the disturbance estimation compensation is designed to improve PMSM system’s disturbance rejection ability in this paper. First of all, the integral fixed-time sliding mode surface is selected according to the error dynamical equation. Then an integral fixed-time sliding mode control algorithm is proposed and rigorous analysis method of the Lyapunov function is provided to demonstrate the speed tracking error will converge to zero in a fixed time. Besides, considering the effect of disturbance load torque, an integral fixed-time sliding mode control algorithm with disturbance estimation compensation is proposed. Through disturbance feedforward compensation, the integral fixed-time sliding mode control law can offer a better dynamical performance with smaller value for the speed chattering. Finally, comparison results of numerical experiments are provided to verify the effectiveness and superiority of the integral fixed-time sliding mode control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, S., Liu, Z.: Adaptive speed control for permanent magnet synchronous motor system with variations of load inertia. IEEE Trans. Ind. Electron. 56(8), 3050–3059 (2009)

    Google Scholar 

  2. Liu, H., Li, S.: Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans. Ind. Electron. 59(2), 1171–1183 (2012)

    Google Scholar 

  3. Morel, F., Shi, X., Retif, J., Allard, B., Buttay, C.: A comparative study of predivtive current control schemes for a permanent magnet synchronous machine drive. IEEE Trans. Ind. Electron. 56(7), 2715–2728 (2009)

    Google Scholar 

  4. Lai, C., Shyu, K.: A novel motor drive design for incremental motion system via sliding-mode control method. IEEE Trans. Ind. Electron. 52(2), 499–507 (2005)

    Google Scholar 

  5. Baik, I., Kim, K., Youn, M.: Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique. IEEE Trans. Control Syst. Technol. 8(1), 47–54 (2000)

    Google Scholar 

  6. Lin, F., Lee, T., Lin, C.: Robust H\(\infty \) controller design with recurrent neural network for linear synchronous motor drive. IEEE Trans. Ind. Electron. 50(3), 456–470 (2003)

    Google Scholar 

  7. Jan, R., Tseng, C., Liu, R.: Robust PID control design for permanent-magnet synchronous motor: A genetic approach. Electric Power Syst. Res. 78(7), 1161–1168 (2008)

    Google Scholar 

  8. Chen, Z., Shan, C., Zhu, H.: Adaptive fuzzy sliding mode control algorithm for a non-affine nonlinear system. IEEE Trans. Ind. Inform. 3(4), 302–311 (2007)

    Google Scholar 

  9. Su, Y., Zheng, C., Duan, B.: Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 52(3), 814–823 (2005)

    Google Scholar 

  10. Kim, K., Youn, M.: A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique. IEEE Trans. Ind. Electron. 49(3), 524–535 (2002)

    Google Scholar 

  11. Zhou, J., Wang, Y.: Adaptive backstepping speed controller design for a permanentmagnet synchronous motor. Electric Power Appl. 149(2), 165–172 (2002)

    Google Scholar 

  12. Cheng, Y., Wen, G., Du, H.: Design of robust discretized sliding mode controller: analysis and application to Buck converters. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2019.2962473

    Article  Google Scholar 

  13. Wang, H., Mi, C., Cao, Z., Zheng, J., Man, Z., Jin, X., Tang, H.: Precise Discrete-Time steering control for robotic fish based on Data-Assisted technique and Super-Twisting-like algorithm. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2019.2962464

    Article  Google Scholar 

  14. Ding, S., Park, J., Chen, C.: Second-order sliding mode controller design with output constraint. Automatica (2020). https://doi.org/10.1016/j.automatica.2019.108704

    Article  MATH  Google Scholar 

  15. Liu, S., Liu, Y., Wang, N.: Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn. 88(1), 465–476 (2017)

    MATH  Google Scholar 

  16. Hu, Y., Wang, H.: Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observe. Mech. Syst. Signal Process. 135, 1–18 (2020)

    Google Scholar 

  17. Roy, S., Baldi, S., Fridman, L.: On adaptive sliding mode control without a priori bounded uncertainty. Automatica (2020). https://doi.org/10.1016/j.automatica.2019.108650

    Article  MATH  Google Scholar 

  18. Zhang, M., Zhang, Y., Ouyang, H., Ma, C., Cheng, X.: Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. Nonlinear Dyn. 99, 2727–2741 (2020)

    MATH  Google Scholar 

  19. Leu, V., Choi, H., Jung, J.: Fuzzy sliding mode speed controller for PM synchronous motors With a load torque observer. IEEE Trans. Power Electron. 27(3), 1530–1539 (2012)

    Google Scholar 

  20. Xu, W., Jiang, Y., Mu, C.: Novel composite sliding mode control for PMSM drive system based on disturbance observer. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  21. Chang, S., Chen, P., Ting, Y., Hung, S.: Robust current control-based sliding mode control with simple uncertainties estimation in permanent magnet synchronous motor drive systems. IET Electric Power Appl. 4(6), 441–450 (2010)

    Google Scholar 

  22. Zhang, X., Sun, L., Zhao, K., Sun, Li: Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans. Power Electron. 28(3), 1358–1365 (2013)

    Google Scholar 

  23. Jiang, Y., Xu, W., Mu, C., Liu, Yi: Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans. Veh. Technol. 67(1), 251–263 (2018)

    Google Scholar 

  24. Liu, J., Li, H., Deng, Y.: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control. IEEE Trans. Power Electron. 33(4), 3655–3671 (2018)

    Google Scholar 

  25. Li, C., Yu, X., Huang, T., He, X.: Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2407–2418 (2018)

    Google Scholar 

  26. Li, C., Yu, X., Yu, W., Chen, G., Wang, J.: Efficient computation for sparse load shifting in demand side management. IEEE Trans. Smart Grid 8(1), 250–261 (2017)

    Google Scholar 

  27. Chibani, A., Daaou, B., Gouichiche, A.: Finite-time integral sliding mode control for chaotic permanent magnet synchronous motor systems. Arch. Electr. Eng. 66(2), 229–239 (2017)

    Google Scholar 

  28. Qi, L., Bao, S., Shi, H.: Permanent-magnet synchronous motor velocity control based on second-order integral sliding mode control algorithm. Trans. Inst. Meas. Control 37(7), 875–882 (2013)

    Google Scholar 

  29. Chen, Z., Geng, J., Liu, X.: An integral and exponential time-varying sliding mode control of permanent magnet synchronous motors. Trans. China Electrotech. Soc. 26(6), 56–61 (2011)

    Google Scholar 

  30. Zhang, L., Obeid, H., Laghrouche, S., Cirrincione, M.: Second order sliding mode observer of linear induction motor. IET Electric Power Appl. 13(1), 38–47 (2019)

    Google Scholar 

  31. Hou, Q., Ding, S., Yu, X.: Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer. IEEE Trans. Energy Convers. (2020). https://doi.org/10.1109/TEC.2020.2985054

    Article  Google Scholar 

  32. Gao, P., Zhang, G., Ouyang, H., Mei, L.: An adaptive super twisting nonlinear fractional order PID sliding mode control of permanent magnet synchronous motor speed regulation system based on extended state observer”. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.2980390

    Article  Google Scholar 

  33. Xu, W., Jiang, Y., Mu, C.: Novel composite sliding mode control for PMSM drive system based on disturbance observer. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  34. Kim, W., Shin, D., Chung, C.: Microstepping using a disturbance observer and a variable structure controller for permanent magnet stepper motors. IEEE Trans. Ind. Electron. 60(7), 2689–2699 (2013)

    Google Scholar 

  35. Li, S., Zong, K., Liu, H.: A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Trans. Inst. Meas. Control 33(5), 522–541 (2011)

    Google Scholar 

  36. Bhat, S., Bernstein, S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Liu, J., Sun, M., Chen, Z., Sun, Q.: Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dyn. 99, 2785–2799 (2020)

    MATH  Google Scholar 

  38. Chen, L., Wang, Q.: Finite-time adaptive fuzzy command filtered control for nonlinear systems with indifferentiable non-affine functions. Nonlinear Dyn. 100, 493–507 (2020)

    MATH  Google Scholar 

  39. Shen, H., Li, F., Yan, H., Karimi, H.R., Lam, H.K.: Finite-time event-triggered H control for T-S fuzzy Markov jump systems. Nonlinear Dyn. 82(4), 1683–1690 (2015)

    Google Scholar 

  40. Sun, Z., Shao, Y., Chen, C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Li, S., Zhou, M., Yu, X.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Ind. Inform. 9(4), 1879–1891 (2013)

    Google Scholar 

  42. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Rios, H., Efimov, D., Moreno, J.: Time-varying parameter identification algorithms: finite and fixed-time convergence. IEEE Trans. Autom. Control 62(7), 3671–3677 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, B., Jia, Y.: Fixed-time consensus protocols for multi-agent systems with linear and nonlinear state measurements. Nonlinear Dyn. 82(4), 1683–1690 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, L., Wei, C., Jing, L., Cui, N.: Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances. Nonlinear Dyn. 93(4), 2543–2563 (2018)

    MATH  Google Scholar 

  46. Du, H., Wen, G., Wu, D., Cheng, Y., Lü, J.: Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems. Automatica 113, 1–11 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19(4), 467–473 (1992)

    MathSciNet  MATH  Google Scholar 

  48. Hong, Y., Xu, Y., Huang, J.: Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 185–200 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Khalil, H.: Nonlinear Systems (3rd Edition), pp. 303–334. Prentice Hall, Englewood (2002)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61673153 and the Fundamental Research Funds for the Central Universities of China under Grants No. PA2020GDKC0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Du, H., Zhang, W. et al. Implementation of integral fixed-time sliding mode controller for speed regulation of PMSM servo system. Nonlinear Dyn 102, 185–196 (2020). https://doi.org/10.1007/s11071-020-05938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05938-3

Keywords

Navigation