Skip to main content
Log in

Adaptive backstepping control for flexible-joint manipulator using interval type-2 fuzzy neural network approximator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an adaptive backstepping controller based on interval type-2 fuzzy neural network (IT2FNN) approximator is proposed for flexible-joint manipulator with mismatched uncertainties. Backstepping control has the ability to deal with the mismatched problem, and IT2FNN approximator can be utilized to approximate unknown nonlinear functions. Through the Lyapunov stability analysis, all the signals in the closed-loop system are guaranteed to be ultimately bounded. Simulation results show that the tracking error of the proposed controller can be reduced to arbitrarily small values, and the tracking performance is better than the adaptive backstepping controllers based on type-1 fuzzy neural network approximator and neural network approximator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khoygani, M.R.R., Ghasemi, R., Vali, A.R.: Intelligent nonlinear observer design for a class of nonlinear discrete-time flexible joint robot. Intell. Serv. Robot. 8(1), 45–56 (2015)

    Article  Google Scholar 

  2. Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yun, J.N., Su, J.B.: Design of a disturbance observer for a two-link manipulator with flexible joints. IEEE Trans. Control Syst. Technol. 22(2), 809–815 (2014)

    Article  MathSciNet  Google Scholar 

  4. Singh, J.P., Lochan, K., Kuznetsov, N.V., et al.: Coexistence of single- and multi-scroll chaotic orbits in a single-link flexible joint robot manipulator with stable spiral and index-4 spiral repellor types of equilibria. Nonlinear Dyn. 90(2), 1277–1299 (2017)

    Article  Google Scholar 

  5. Bian, Y., Gao, Z., Yun, C.: Motion control of the flexible manipulator via controllable local degrees of freedom. Nonlinear Dyn. 55(4), 373–384 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Izadbakhsh, A.: Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification. Nonlinear Dyn. 85(2), 751–765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, M.J., Park, Y.J., Chung, W.K.: Design of a momentum-based disturbance observer for rigid and flexible joint robots. Intell. Serv. Robot. 8(1), 57–65 (2015)

    Article  Google Scholar 

  8. Chalhoub, N.G., Kfoury, G.A.: Development of a robust nonlinear observer for a single-link flexible manipulator. Nonlinear Dyn. 39(3), 217–233 (2005)

    Article  MATH  Google Scholar 

  9. Luca, A.D., Albu-Schaffer, A., Haddadin, S., et al.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ International Conference on Intelligent Robots & Systems (2007)

  10. Zouari, L., Abid, H., Abid, M.: Sliding mode and PI controllers for uncertain flexible joint manipulator. Int. J. Autom. Comput. 12(2), 117–124 (2015)

    Article  Google Scholar 

  11. Spong, M.W., Khorasani, K., Kokotovic, P.V.: An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom. 3(4), 291–300 (1987)

    Article  Google Scholar 

  12. Ghorbel, F., Hung, J.Y., Spong, M.W.: Adaptive control of flexible-joint manipulators. Control Syst. Mag. IEEE 9(7), 9–13 (1989)

    Article  Google Scholar 

  13. Oh, J.H., Lee, J.S.: Control of flexible joint robot system by backstepping design approach. Intell. Autom. Soft Comput. 5(4), 12 (1999)

    Article  Google Scholar 

  14. Kim, M.J., Chung, W.K.: Disturbance-observer-based pd control of flexible joint robots for asymptotic convergence. IEEE Trans. Robot. 31(6), 1–9 (2015)

    Article  Google Scholar 

  15. Kugi, A., Ott, C., Albu-Schaffer, A., et al.: On the passivity-based impedance control of flexible joint robots. IEEE Trans. Robot. 24(2), 416–429 (2008)

    Article  Google Scholar 

  16. Liu, Z.G., Huang, J.M.: A new adaptive tracking control approach for uncertain flexible joint robot system. Int. Autom. Comput. 12(5), 559–566 (2015)

    Article  Google Scholar 

  17. Huang, A.C., Chen, et al.: Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12(5), 770–775 (2004)

    Article  Google Scholar 

  18. Liu, Y.J., Li, S., Tong, S., et al.: Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–11 (2018)

    Article  Google Scholar 

  19. Zhao, T., Liu, J., Dian, S.: Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity. Inf. Sci. 483, 153–173 (2019)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miao, Z., Wang, Y.: Robust dynamic surface control of flexible joint robots using recurrent neural networks. J. Control Theory Appl. 11(2), 222–229 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. A Publ. IEEE Syst. Man Cybern. Soc. 36(6), 1342–55 (2006)

    Article  Google Scholar 

  23. Macnab, C.J.B.: Improved output tracking of a flexible-joint arm using neural networks. Neural Process. Lett. 32(2), 201–218 (2010)

    Article  Google Scholar 

  24. He, W., Yan, Z., Sun, Y., et al.: Neural-learning-based control for a constrained robotic manipulator with flexible joints. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11 (2018)

  25. Liu, J.K.: Design of Robot Control System and MATLAB Simulation. Tsinghua University Press, Beijing (2008)

    Google Scholar 

  26. Li, Y., Tong, S., Li, T.: Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot. Nonlinear Dyn. 70(3), 2035–2048 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Park, C.W., Cho, Y.W.: Adaptive tracking control of flexible joint manipulator based on fuzzy model reference approach. IEE Proc. Control Theory Appl. 150(2), 198 (2003)

    Article  Google Scholar 

  28. Liu, J., Zha, L., Xie, X., et al.: Resilient observer-based control for networked nonlinear TCS fuzzy systems with hybrid-triggered scheme. Nonlinear Dyn. 91(3), 2049–2061 (2018)

    Article  MATH  Google Scholar 

  29. Li, H., Gao, Y., Shi, P., et al.: Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 61(9), 2745–2751 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xie, X., Yue, D., Peng, C.: Multi-instant switching control of nonlinear networked systems under unreliable wireless digital channels. J. Frankl. Inst. 354(9), 3872–3884 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Su, X., Xia, F., Liu, J., et al.: Event-triggered fuzzy control of nonlinear systems with its application to inverted pendulum systems. Automatica 94, 236–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, H.B., Ying, H., Duan, J.A.: Adaptive control using interval type-2 fuzzy logic for uncertain nonlinear systems. J. Cent. S. Univ. Technol. 18(3), 760–766 (2011)

    Article  Google Scholar 

  33. Oh, S.K., Jang, H.J., Pedrycz, W.: A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization. Expert Syst. Appl. 38(9), 11217–11229 (2011)

    Article  Google Scholar 

  34. Xie, T.T., Yu, H., Wilamowski, B.M.: Comparison of Fuzzy and Neural Systems for Implementation of Nonlinear Control Surfaces// Human–Computer Systems Interaction: Backgrounds and Applications 2. Springer, Berlin (2012)

    Google Scholar 

  35. Zhao, T., Dian, S.: State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links. IEEE Trans. Fuzzy Syst. 26(2), 951–966 (2018)

    Article  Google Scholar 

  36. Mohammadzadeh, A., Ghaemi, S., Kaynak, O., et al.: Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system. Appl. Soft Comput. 49, 544–560 (2016)

    Article  Google Scholar 

  37. Li, Y.M., Yang, Y., Li, L.: Adaptive backstepping fuzzy control based on type-2 fuzzy system. J. Appl. Math. 2012(3), 295–305 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Ezziani, N., Hussain, A., Essounbouli, N., et al.: Backstepping adaptive type-2 fuzzy controller for induction machine. In: IEEE International Symposium on Industrial Electronics, 2008. ISIE 2008. IEEE (2008)

  39. Meskine, K., Khaber, F.: Robust backstepping control for uncertain chaotic multi-inputs multi-outputs systems using type 2 fuzzy systems. Trans. Inst. Meas. Control (2018). https://doi.org/10.1177/0142331217742965

  40. Chaoui, H., Gueaieb, W.: Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell. Robot. Syst. 51(2), 159–186 (2008)

    Article  Google Scholar 

  41. Chaoui, H., Gueaieb, W., Biglarbegian, M., et al.: Computationally efficient adaptive type-2 fuzzy control of flexible-joint manipulators. Robotics 2(2), 66–91 (2013)

    Article  Google Scholar 

  42. Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96–110 (2019)

    Article  MathSciNet  Google Scholar 

  43. Wu, D.: Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans. Fuzzy Syst. 21(1), 80–99 (2013)

    Article  Google Scholar 

  44. Mohammadzadeh, A., Hashemzadeh, F.: A new robust observer-based adaptive type-2 fuzzy control for a class of nonlinear systems. Appl. Soft Comput. 37, 204–216 (2015)

    Article  Google Scholar 

  45. Bibi, Y., Bouhali, O., Bouktir, T.: Petri type 2 fuzzy neural networks approximator for adaptive control of uncertain non-linear systems. IET Control Theory Appl. 11(17), 3130–3136 (2017)

    Article  MathSciNet  Google Scholar 

  46. Liu, X., Yang, C., Chen, Z., et al.: Neuro-adaptive observer based control of flexible joint robot. Neurocomputing 275, 73–82 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61703291) and the Applied Basic Research Program of Science and Technology Department of Sichuan Province, China (2016JY0085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhao.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dian, S., Hu, Y., Zhao, T. et al. Adaptive backstepping control for flexible-joint manipulator using interval type-2 fuzzy neural network approximator. Nonlinear Dyn 97, 1567–1580 (2019). https://doi.org/10.1007/s11071-019-05073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05073-8

Keywords

Navigation