Skip to main content
Log in

Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel implementation of an adaptive robust second-order sliding mode control (ARSSMC) on a mobile robot with four Mecanum wheels. Each wheel of the mobile robot is actuated by separate motors. It is the first time that higher-order sliding mode control method is implemented for the trajectory tracking control of Mecanum-wheeled mobile robot. Kinematic and dynamic modeling of the robot is done to derive an equation of motion in the presence of friction, external force disturbance, and uncertainties. In order to make the system robust, second-order sliding mode control law is derived. Further, adaptive laws are defined for adaptive estimation of switching gains. To check the tracking performance of the proposed controller, simulations are performed and comparisons of the obtained results are made with adaptive robust sliding mode control (ARSMC) and PID controller. In addition, a new and low-cost experimental approach is proposed to implement the proposed control law on a real robot. Experimental results prove that without compromising on the dynamics of the robot real-time implementation is possible in less computational time. The simulation and experimental results obtained confirms the superiority of ARSSMC over ARSMC and PID controller in terms of integral square error (ISE), integral absolute error (IAE), and integral time-weighted absolute error (ITAE), control energy and total variance (TV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Pin, F.G., Killough, S.M.: A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans. Robot. Autom. 10(4), 480–489 (1994)

    Article  Google Scholar 

  2. Tzafestas, S.G.: Introduction to Mobile Robot Control. Elsevier, Waltham (2014)

    Google Scholar 

  3. Muir, P.F., Neuman, C.P.: Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot. In: Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles, pp. 25–31. Springer, New York (1990)

    Chapter  Google Scholar 

  4. Conceicao, A.S., Moreira, A.P., Costa, P.J.: Practical approach of modeling and parameters estimation for omnidirectional mobile robots. IEEE/ASME Trans. Mechatron. 14(3), 377–381 (2009)

    Article  Google Scholar 

  5. Tlale, N., De Villiers, M.: Kinematics and dynamics modelling of a mecanum wheeled mobile platform. In: 15th International Conference on Mechatronics and Machine Vision in Practice. pp. 657-662. IEEE (2008)

  6. De Villiers, M., Tlale, N.S.: Development of a control model for a four wheel mecanum vehicle. J. Dyn. Syst. Meas. Control. 134(1), 011007 (2012)

    Article  Google Scholar 

  7. Yang, J.M., Kim, J.H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 15(3), 578–587 (1999)

    Article  Google Scholar 

  8. Viet, T.D., Doan, P.T., Hung, N., Kim, H.K., Kim, S.B.: Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction. J. Mech. Sci. Technol. 26(7), 2197–2211 (2012)

    Article  Google Scholar 

  9. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  10. Purwin, O., D Andrea, R.: Trajectory generation and control for four wheeled omnidirectional vehicles. Robot. Auton. Syst. 54(1), 13–22 (2006)

    Article  Google Scholar 

  11. Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans. Syst. Man Cybern. Part B (Cybern). 39(3), 788–799 (2009)

    Article  Google Scholar 

  12. Ryu, J.C., Agrawal, S.K.: Differential flatness-based robust control of mobile robots in the presence of slip. Int. J. Robot. Res. 30(4), 463–475 (2011)

    Article  Google Scholar 

  13. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer Science and Business Media, New York (2013)

    MATH  Google Scholar 

  14. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 4, pp. 4591–4596. IEEE (1996)

  15. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Systems. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  16. Fridman, L.M.: An averaging approach to chattering. IEEE Trans. Autom. Control. 46(8), 1260–1265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fridman, L.M.: Chattering analysis in sliding mode systems with inertial sensors. Int. J. Control. 76(9–10), 906–912 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boiko, I., Fridman, L., Iriarte, R.: Analysis of chattering in continuous sliding mode control. In: Proceedings of the 2005 American Control Conference, pp. 2439–2444. IEEE (2005)

  19. Bartolini, G., Pisano, A., Punta, E., Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control. 76(9–10), 875–892 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mondal, S., Mahanta, C.: Nonlinear sliding surface based second order sliding mode controller for uncertain linear systems. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3760–3769 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Salgado-Jimenez, T., Jouvencel, B.: Using a high order sliding modes for diving control a torpedo autonomous underwater vehicle. In: Proceedings of OCEANS 2003, vol. 2, pp. 934–939. IEEE (2003)

  23. Mihoub, M., Nouri, A.S., Abdennour, R.B.: Real-time application of discrete second order sliding mode control to a chemical reactor. Control Eng. Pract. 17(9), 1089–1095 (2009)

    Article  Google Scholar 

  24. Chen, C.Y., Li, T.H., Yeh, Y.C., Chang, C.C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2), 156–166 (2009)

    Article  Google Scholar 

  25. Chen, C.Y., Li, T.H., Yeh, Y.C.: EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots. Inf. Sci. 179(1), 180–195 (2009)

    Article  MATH  Google Scholar 

  26. Chen, N., Song, F., Li, G., Sun, X., Ai, C.: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2885–2899 (2013)

  27. Cui, M., Liu, W., Liu, H., Jiang, H., Wang, Z.: Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties. Nonlinear Dyn. 83(1), 667–683 (2016)

  28. Huang, J.T., Van Hung, T., Tseng, M.L.: Smooth switching robust adaptive control for omnidirectional mobile robots. IEEE Trans. Control Syst. Technol. 23(5), 1986–1993 (2015)

  29. Wang, H., Liu, L., He, P., Yu, M., Do, M.T., Kong, H., Man, Z.: Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn. 85(2), 1331–1344 (2016)

    Article  Google Scholar 

  30. Slotine, J., Li, W.: Applied Nonlinear Control. Prentice-Hall, New Jersey (1991)

    MATH  Google Scholar 

  31. Lewis, R.M., Torczon, V., Trosset, M.W.: Direct search methods: then and now. J. Comput. Appl. Math. 124(1), 191–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veer Alakshendra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 140135 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alakshendra, V., Chiddarwar, S.S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn 87, 2147–2169 (2017). https://doi.org/10.1007/s11071-016-3179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3179-1

Keywords

Navigation