Skip to main content
Log in

Hopf bifurcation analysis of a predator–prey model with Holling-II type functional response and a prey refuge

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a predator–prey model with Holling-II type functional response and a prey refuge is considered. The existence of Hopf bifurcations at the positive fixed point is established by analyzing its distribution of characteristic values. The stability and the directions of Hopf bifurcations of the model are derived for the variation of some crucial parameters. It is shown that these key parameters have a tremendous influence on the coexistence, the oscillation, and the stability of the considered model. Finally, numerical simulations are carried out to illustrate the validity of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cao, J., Yuan, R.: Bifurcation analysis in a modified Lesile–Gower model with Holling type II functional response and delay. Nonlinear Dyn. 84, 1341–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sun, W., Huang, C., Lu, J., Li, X., Chen, S.: Velocity synchronization of multi-agent systems with mismatched parameters via sampled position data. Chaos 26, 023106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sun, W., Lu, L., Chen, S., Yu, X.: Pinning impulsive control algorithms for complex network. Chaos 24, 013141 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lotka, A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920)

    Article  Google Scholar 

  5. Lotka, A.J.: Elements of mathematical biology. Econometrica 27, 493–495 (1956)

    Google Scholar 

  6. Ahmad, S.: On the nonautonomous Volterra–Lotka competition equations. Proc. Am. Math. Soc. 117, 199–204 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holt, R.D.: Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977)

    Article  MathSciNet  Google Scholar 

  8. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Sot. 97, 5–60 (1965)

    Article  Google Scholar 

  9. Beroual, N., Bendjeddou, A.: On a predator–prey system with Holling functional response: \(\frac{x^{p}}{a+x^{p}}\). Natl. Acad. Sci. Lett. 39, 43–46 (2016)

    Article  Google Scholar 

  10. Wang, W., Sun, J.H.: On the predator–prey system with Holling-\((n+1)\) functional response. Acta Math. Sin. 23, 1–6 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Zhou, J.: Bifurcation analysis of a diffusive predator–prey model with ratio-dependent Holling type III functional response. Nonlinear Dyn. 81, 1535–1552 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gupta, R.P., et al.: Bifurcation analysis and control of Leslie–Gower predator–prey model with Michaelis–Menten type prey-harvesting. Differ. Equ. Dyn. Syst. 20, 339–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Basheer, A., Quansah, E., Bhowmick, S., et al.: Prey cannibalism alters the dynamics of Holling–Tanner-type predator–prey models. Nonlinear Dyn. 85, 2549–2567 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, C.Q., Liu, L., Yan, P., et al.: Stability and hopf bifurcation analysis of a predator–prey model with time delayed incomplete trophic transfer. Acta Math. Appl. Sin. 31, 235–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pal, D., Santra, P., Mahapatra, G.S.: Predator–prey dynamical behavior and stability analysis with square root functional response. Int. J. Appl. Comput. Math. 3, 1833–1845 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lu, T.J., Wang, M.J., Liu, Y.: Global stability analysis of a ratio-dependent predator–prey system. Appl. Math. Mech. 29, 495–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Myerscough, M.R., Darwen, M.J., Hogarth, W.L.: Stability, persistence and structural stability in a classical predator–prey model. Ecol. Model. 89, 31–42 (1996)

    Article  Google Scholar 

  18. Rana, S., Bhowmick, A.R., Bhattacharya, S.: Impact of prey refuge on a discrete time predator–prey system with Allee effect. Int. J. Bifurc. Chaos 24, 1450106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, C., Sun, W., Zheng, Z., Lu, J., Chen, S.: Hopf bifurcation control of the M–L neuron model with type I. Nonlinear Dyn. 87, 755–766 (2017)

    Article  Google Scholar 

  20. Baisad, K., Moonchai, S.: Analysis of stability and hopf bifurcation in a fractional gauss-type predator–prey model with allee effect and Holling type-III functional response. Adv. Differ. Equ. N. Y. 2018, 82 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, R., Wei, J.: Stability and bifurcation analysis of a diffusive prey–predator system in Holling type III with a prey refuge. Nonlinear Dyn. 79, 631–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, G., Tang, S., Cheke, R.A.: Global analysis of a Holling type II predator–prey model with a constant prey refuge. Nonlinear Dyn. 76, 635–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sih, A.: Prey refuges and predator–prey stability. Theor. Popul. Biol. 31, 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y., Wang, J.Z.: Influence of prey refuge on predator–prey dynamics. Nonlinear Dyn. 67, 191–201 (2012)

    Article  MathSciNet  Google Scholar 

  25. Eduardo, G.O., Rodrigo, R.J.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  26. Ko, W., Ryu, K.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 246–252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Deshpande, A.S., Daftardar-Gejji, V., Sukale, Y.V.: On Hopf bifurcation in fractional dynamical systems. Chaos Soliton Fract. 98, 189–198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, Y., Liu, J.: Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems. Appl. Math. Mech. 29, 199–206 (2008)

    Article  MATH  Google Scholar 

  30. Liao, M., Wang, Q.R.: Stability and bifurcation analysis in a diffusive Brusselator-type system. Int. J. Bifurc. Chaos 26, 1650119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Robinson, R.C.: An Introduction to Dynamical System: Continuous and Discrete. Machine Industry Press, New York (2005)

    Google Scholar 

  32. Ji, L., Zhu, X.: Study on Effect of Wind Power System Parameters for Hopf Bifurcation Based on Continuation Method. Electrical Power Systems and Computers. Lecture Notes in Electrical Engineering, vol. 99. Springer, Berlin (2011)

    Google Scholar 

  33. Liu, C., Liu, X., Liu, S.: Bifurcation analysis of a Morris–Lecar neuron model. Biol. Cybern. 108, 75–84 (2014)

    Article  MathSciNet  Google Scholar 

  34. Liao, H.: Novel gradient calculation method for the largest Lyapunov exponent of chaotic systems. Nonlinear Dyn. 85, 1–16 (2016)

    Article  MathSciNet  Google Scholar 

  35. Yang, J., Cai, X., Liu, X.: The maximal Lyapunov exponent for a three-dimensional system driven by white noise. Commun. Nonlinear Sci. Numer. Simul. 15, 3498–3506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, B.J., Choe, G.H.: High precision numerical estimation of the largest Lyapunov exponent. Commun. Nonlinear Sci. Numer. Simul. 15, 1378–1384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ramasubramanian, K., Sriram, M.S.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139(1–2), 72–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, H., Bayani, A., Akgul, A., et al.: A flexible chaotic system with adjustable amplitude, largest Lyapunov exponent, and local Kaplan–Yorke dimension and its usage in engineering applications. Nonlinear Dyn. 92, 1791–1800 (2018)

    Article  Google Scholar 

  40. Sun W., Guan J., Lu J., Zheng Z., Yu X., Chen S.: Synchronization of the networked system with continuous and impulsive hybrid communications. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2911926

  41. Zhou, W., Zhou, X., Yang, J., Zhou, J., Tong, D.: Stability analysis and application for delayed neural networks driven by fractional Brownian noise. IEEE Trans. Neural Netw. Learn. Syst. 29, 1491–1502 (2018)

    Article  MathSciNet  Google Scholar 

  42. Song, Y., Zeng, Z.: Razumikhin-type theorems on pth moment boundedness of neutral stochastic functional differential equations with Makovian switching. J. Franklin I. 355, 8296–8312 (2018)

    Article  MATH  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (11547006, 61503046, 11875135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Sun, W., Song, Y. et al. Hopf bifurcation analysis of a predator–prey model with Holling-II type functional response and a prey refuge. Nonlinear Dyn 97, 1439–1450 (2019). https://doi.org/10.1007/s11071-019-05063-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05063-w

Keywords

Navigation