Skip to main content
Log in

Prey cannibalism alters the dynamics of Holling–Tanner-type predator–prey models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Cannibalism, which is the act of killing and consumption of conspecifics, has been considered primarily in the predator, despite strong ecological evidence that it exists among prey. In the current manuscript, we investigate both the ODE and spatially explicit forms of a Holling–Tanner model, with ratio-dependent functional response, and show that cannibalism in the predator provides a stabilizing influence as expected. However, when cannibalism in the prey is considered, we show that it cannot stabilize the unstable interior equilibrium in the ODE case, in certain parameter regime, but can destabilize the stable interior equilibrium, leading to a stable limit cycle or “life boat” mechanism, for prey. We also show that prey cannibalism can lead to pattern forming Turing dynamics, which is an impossibility without it. The effects of a stochastic prey cannibalism rate are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abrams, P.A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15(8), 337–341 (2000)

    Article  Google Scholar 

  2. Asllani, M., Challenger, J.D., Pavone, F.S., Sacconi, L., Fanelli, D.: The theory of pattern formation on directed networks. Nat. Commun. 5, 1–9 (2014)

  3. Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Math. Biosci. 236(1), 64–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswas, S., Chatterjee, S., Chattopadhyay, J.: Cannibalism may control disease in predator population: result drawn from a model based study. Math. Methods Appl. Sci. 38(11), 2272–2290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buonomo, B., Lacitignola, D.: On the stabilizing effect of cannibalism in stage-structured population models. Math. Biosci. Eng. 3(4), 717–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buonomo, B., Lacitignola, D., Rionero, S.: Effect of prey growth and predator cannibalism rate on the stability of a structured population model. Nonlinear Anal. Real World Appl. 11(2), 1170–1181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, A.A.Y.-H., Giraldo-Perez, P., Smith, S., Blumstein, D.T.: Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol. Lett. 6(4), 458–461 (2010)

    Article  Google Scholar 

  8. Chow, Y., Jang, S.R.-J.: Cannibalism in discrete-time predator-prey systems. J. Biol. Dyn. 6(1), 38–62 (2012)

    Article  MathSciNet  Google Scholar 

  9. Claessen, D., De Roos, A.M., Persson, L.: Population dynamic theory of size-dependent cannibalism. Proc. R. Soc. Lond. B Biol. Sci. 271(1537), 333–340 (2004)

    Article  Google Scholar 

  10. Don, W.S., Solomonoff, A.: Accuracy and speed in computing the chebyshev collocation derivative. SIAM J. Sci. Comput. 16(6), 1253–1268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey-predator systems. Nonlinear Dyn. 67(4), 2543–2548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Francis, C.D., Ortega, C.P., Cruz, A.: Noise pollution changes avian communities and species interactions. Curr. Biol. 19(16), 1415–1419 (2009)

    Article  Google Scholar 

  13. Getto, P., Diekmann, O., De Roos, A.: On the (dis) advantages of cannibalism. J. Math. Biol. 51(6), 695–712 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlieb, D., Lustman, L.: The spectrum of the chebyshev collocation operator for the heat equation. SIAM J Numer. Anal. 20(5), 909–921 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55(3), 763–783 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelkel, J., Surulescu, C.: On a stochastic reaction-diffusion system modeling pattern formation on seashells. J. Math. Biol. 60(6), 765–796 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kelly, D.: The culture that still practices cannibalism (Oct. 2013)

  18. Kohlmeier, C., Ebenhöh, W.: The stabilizing role of cannibalism in a predator-prey system. Bull. Math. Biol. 57(3), 401–411 (1995)

    Article  MATH  Google Scholar 

  19. Leslie, P., Gower, J.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika. 47, 219–234 (1960)

  20. Li, L., Wang, Z.-J.: Dynamics in a predator-prey model with space and noise. Appl. Math. Comput. 219(12), 6542–6547 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Maini, P.K., Woolley, T.E., Baker, R.E., Gaffney, E.A., Lee, S.S.: Turing’s model for biological pattern formation and the robustness problem. Interface Focus, rsfs20110113 (2012)

  22. Murray, J.D.: Mathematical biology I: an introduction, volume 17 of interdisciplinary applied mathematics (2002)

  23. Okubo, A., Levin, S.A.: Diffusion and ecological problems: modern perspectives, vol. 14. Springer, New York (2013)

  24. Pennell, C.: Cannibalism in early modern North Africa. Br. J. Middle Eastern Stud. 18(2), 169–185 (1991)

    Article  Google Scholar 

  25. Polis, G.A.: The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syst. 12, 225–251 (1981)

  26. Press, A.: Indian doc focuses on hindu cannibal sect (Oct. 2005)

  27. Rudolf, V.H.: Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades. Ecology 88(12), 2991–3003 (2007)

    Article  Google Scholar 

  28. Rudolf, V.H.: The interaction of cannibalism and omnivory: consequences for community dynamics. Ecology 88(11), 2697–2705 (2007)

    Article  Google Scholar 

  29. Rudolf, V.H.: The impact of cannibalism in the prey on predator-prey systems. Ecology 89(11), 3116–3127 (2008)

    Article  Google Scholar 

  30. Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey-predator model with the allee effect. Ecol. Complex. 11, 12–27 (2012)

    Article  Google Scholar 

  31. Siemers, B.M., Schaub, A.: Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc. R. Soc. Lond. B Biol. Sci. 278(1712), 1646–1652 (2011)

    Article  Google Scholar 

  32. Solis, F.J., Ku-Carrillo, R.A.: Birth rate effects on an age-structured predator-prey model with cannibalism in the prey. In: Abstract and applied analysis, vol. 501, p. 241312. Hindawi Publishing Corporation, Cairo (2014)

  33. Strogatz, S.H.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview press, Boulder (2014)

  34. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, B.-L.: Rich dynamics in a predator-prey model with both noise and periodic force. BioSystems 100(1), 14–22 (2010)

    Article  MathSciNet  Google Scholar 

  35. Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. Nonlinear Dyn. 58(1–2), 75–84 (2009)

    Article  MATH  Google Scholar 

  36. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  37. White, K., Gilligan, C.: Spatial heterogeneity in three species, plant-parasite-hyperparasite, systems. Philos. Trans. R. Soc. B Biol. Sci. 353(1368), 543–557 (1998)

    Article  Google Scholar 

  38. Wyller, J., Blomquist, P., Einevoll, G.T.: Turing instability and pattern formation in a two-population neuronal network model. Phys. D 225(1), 75–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, L., Zhang, C.: Rich dynamic of a stage-structured prey-predator model with cannibalism and periodic attacking rate. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4029–4040 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge very helpful conversations with Professor Volker Rudolf, in the Department of Biosciences at Rice University, on various ecological concepts pertaining to prey cannibalism, and subsequent mathematical modeling of such phenomenon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aladeen Basheer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basheer, A., Quansah, E., Bhowmick, S. et al. Prey cannibalism alters the dynamics of Holling–Tanner-type predator–prey models. Nonlinear Dyn 85, 2549–2567 (2016). https://doi.org/10.1007/s11071-016-2844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2844-8

Keywords

Mathematics Subject Classification

Navigation