Skip to main content
Log in

Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For describing the propagation of ultrashort pulses in a high-speed, long-distance optical fiber transmission system with the fourth-order dispersion, cubic–quintic nonlinearity, self-steepening and self-frequency shift, a higher-order generalized nonlinear Schrödinger equation is investigated. We get the rogue-wave solutions. Effects of the modulation instability on the optical rogue waves are studied: Increasing the growth rate of the modulation instability makes the existence time of the optical rogue wave shorter. We numerically derive the optical breathers in the chaotic wave fields via the modulation instability. Spectrum of the optical chaotic wave field can be used to indicate the appearance of the optical breather in the chaotic wave field. Optical rogue waves in the chaotic wave fields are also gotten via the modulation instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caputo, J.G., Maimistov, A.I.: Unidirectional propagation of an ultra-short electromagnetic pulse in a resonant medium with high frequency stark shift. Phys. Lett. A 296, 34–42 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tai, K., Tomita, A., Jewell, J.L., Hasegawa, A.: Generaltion of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. Appl. Phys. Lett. 49, 236 (1986)

    Article  Google Scholar 

  3. Sartania, S., Cheng, Z., Lenzner, M., Tempea, G., Spielmann, C., Krausz, F., Ferencz, K.: Generation of 0.1-TW 5-fs optical pulses at a 1-kHZ repetition rate. Opt. Lett. 22, 1562–1564 (1997)

    Article  Google Scholar 

  4. Zhou, S., Wise, F.W., Ouzounov, D.G.: Divided-pulse amplification of ultrashort pulses. Opt. Lett. 32, 871–873 (2007)

    Article  Google Scholar 

  5. Katz, O., Small, E., Bromberg, Y., Silberberg, Y.: Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics 5, 372–377 (2011)

    Article  Google Scholar 

  6. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  7. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Now York (2013)

    MATH  Google Scholar 

  8. Maimistov, A.I., Basharov, A.M.: Nonlinear Optical Waves. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  9. Ablowitz, M.J.: Nonlinear Dispersive Waves. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  10. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 18, 2426–2435 (2013)

    Article  MATH  Google Scholar 

  11. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödingger equation. Phys. Rev. E 93, 012214 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zhang, H.Q., Tian, B., Meng, X.H., Lü, X., Liu, W.J.: Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödingger equation. Eur. Phys. J. B 72, 233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödingger equation. Phys. Rev. E 87, 053202 (2013)

    Article  Google Scholar 

  14. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)

    Article  Google Scholar 

  15. Osborne, A.R.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier, Amsterdam (2010)

    MATH  Google Scholar 

  16. Pelinovsky, E., Kharif, C.: Extreme Ocean Waves. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  17. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödingger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)

    Article  Google Scholar 

  18. Akhmediev, N., Soto-crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Akhmediev, N., Soto-crespo, J.M., Ankiewicz, A.: How to exite a rogue wave. Phys. Rev. A 80, 043818 (2009)

    Article  Google Scholar 

  20. Akhmediev, N., Soto-crespo, J.M., Ankiewicz, A.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells–Fokas model. Chaos 23, 013122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, W.R., Liu, D.Y., Xie, X.Y.: Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equation in the birefringent optical fibers. Chaos 27, 043114 (2017)

    Article  MATH  Google Scholar 

  23. Yang, Y., Wang, X., Yan, Z.: Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrödinger equation with varying higher-order even and odd terms. Nonlinear Dyn. 81, 833–842 (2015)

    Article  MATH  Google Scholar 

  24. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    Article  MathSciNet  Google Scholar 

  25. Xie, X.Y., Meng, G.Q.: Dark solitons for the (2+1)-dimensional Davey–Stewartson-like equations in the electrostatic wave packets. Nonlinear Dyn. 93, 779–783 (2018)

    Article  Google Scholar 

  26. Xie, X.Y., Yan, Z.H.: Soliton collisions for the Kundu–Eckhaus equation with variable coefficients in an optical fiber. Appl. Math. Lett. 80, 48–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, M., Shui, J.J., Xu, T.: Generation mechanism of rogue waves for the discrete nonlinear Schrödinger equation. Appl. Math. Lett. 83, 110–115 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lan, Z.Z.: Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrödinger equation. Appl. Math. Lett. 86, 243–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhen, H.L., Tian, B., Wang, Y.F., Liu, D.Y.: Soliton solutions and chaotic motions of the Zakharov equations for the Langmuir wave in the plasma. Phys. Plasmas 22, 032307 (2015)

    Article  Google Scholar 

  30. Wang, L., Wu, X., Zhang, H.Y.: Superregular breathers and state transitions in a resonant erbium-doped fiber system with higher-order effects. Phys. Lett. A 382, 2650–2654 (2018)

    Article  MathSciNet  Google Scholar 

  31. Xie, X.Y., Meng, G.Q.: Collisions between the dark solitons for a nonlinear system in the geophysical fluid. Chaos Solitons Fract. 107, 143–145 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, X.Y., Meng, G.Q.: Multi-dark soliton solutions for a coupled AB system in the geophysical flows. Appl. Math. Lett. 92, 201–207 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cai, L.Y., Wang, X., Wang, L., Li, M., Liu, Y., Shi, Y.Y.: Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn. 90, 2221–2230 (2017)

    Article  Google Scholar 

  34. Xie, X.Y., Meng, G.Q.: Dark soliton excitations and collisions for the (2+1)-dimensional variable-coefficient Davey–Stewartson-like equations in the plasmas or Bose–Einstein condensates. Chin. J. Phys. 59, 160–165 (2019)

    Article  MathSciNet  Google Scholar 

  35. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201–208 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Feng, Y.J., Gao, Y.T., Yu, X.: Soliton dynamics for a nonintegrable model of light-colloid interactive fluids. Nonlinear Dyn. 91, 29–38 (2018)

    Article  Google Scholar 

  37. Jia, T.T., Gao, Y.T., Feng, Y.J., Hu, L., Su, J.J., Li, L.Q., Ding, C.C.: On the quintic time-dependent coefficient derivative nonlinear Schrodinger equation in hydrodynamics or fiber optics. Nonlinear Dyn. 96, 229–241 (2019)

    Article  Google Scholar 

  38. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Google Scholar 

  39. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2018.2883374

    Google Scholar 

  40. Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)

    Article  MathSciNet  Google Scholar 

  41. Gao, L.N., Zi, Y.Y., Yin, Y.H., Ma, W.X., Lü, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233–2240 (2017)

    Article  Google Scholar 

  42. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86, 523–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225–1229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational solutions to an extended Kadomtsev–Petviashvili-like equation with symbolic computation. Comput. Math. Appl. 71, 1560–1567 (2016)

    Article  MathSciNet  Google Scholar 

  46. Lü, X., Ma, W.X., Chen, S., Khalique, C.M.: A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Su, J.J., Gao, Y.T.: Solitons for a (2+1)-dimensional coupled nonlinear Schrodinger system with time-dependent coefficients in an optical fiber. Waves in Random and Complex Media 28, 708–723 (2018)

    Article  MathSciNet  Google Scholar 

  49. Deng, G.F., Gao, Y.T., Gao, X.Y.: Backlund transformation, infinitely-many conservation laws, solitary and periodic waves of an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients. Waves in Random and Complex Media 28, 468–487 (2018)

    Article  Google Scholar 

  50. Choudhuri, A., Porsezian, K.: Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrödinger equation. Phys. Rev. A 85, 033820 (2012)

    Article  Google Scholar 

  51. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755–764 (2014)

    Article  Google Scholar 

  52. Soto-Crespo, J.M., Devine, N., Hoffmann, N.P., Akhmediev, N.: Rogue waves of the Sasa–Satsuma equation in a chaotic wave field. Phys. Rev. E 90, 032902 (2014)

    Article  Google Scholar 

  53. Bayindir, C.: Rogue waves of the Kundu–Eckhaus equation in a chaotic wave field. Phys. Rev. E 93, 032201 (2016)

    Article  MathSciNet  Google Scholar 

  54. Soto-Crespo, J.M., Devine, N., Akhmediev, N.: Integrable turbulence and rogue waves: breathers or solitons. Phys. Rev. Lett. 116, 103901 (2016)

    Article  Google Scholar 

  55. Chow, P.L.: Stochastic Partial differential Equations. CRC Press, New York (2014)

    Google Scholar 

  56. Närhi, M., Wetzel, B., Billet, C., Toenger, S., Sylvestre, T., Merolla, J.M., Morandotti, R., Dias, F., Genty, G., Dudley, J.M.: Real-time measurements of spontaneous breathers and rogue wave events in optical fiber modulation instability. Nat. Commun. 7, 13675 (2016)

    Article  Google Scholar 

  57. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  58. Chan, H.N., Chow, K.W.: Rogue waves for an alternative system of coupled Hirota equations: structural robustness and modulation instability. Stud. Appl. Math. 139, 78–103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC:2017ZZ05), by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Min Yin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, HM., Tian, B., Zhang, CR. et al. Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn 97, 843–852 (2019). https://doi.org/10.1007/s11071-019-05016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05016-3

Keywords

Navigation