Skip to main content
Log in

Adaptive cooperative control for a class of nonlinear multi-agent systems with dead zone and input delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the adaptive fuzzy control problem for multi-agent systems (MASs) with dead zone and input delay. Second-order tracking differentiator is introduced to avoid the repeated differentiations of the virtual control. The problem of dead zone is solved by using dead-zone slope and boundary value theory. Based on the Pade approximation method, the influence of input delay is eliminated of the MASs. The designed controller can guarantee all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and tracking errors converge to a neighbourhood around the origin. Finally, the simulation results show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zheng, Y., Ma, J., Wang, L.: Consensus of hybrid multi-agent systems. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1359–1365 (2018)

    Article  Google Scholar 

  2. Liu, L., Liu, Y., Tong, S.: Fuzzy based multi-error constraint control for switched nonlinear systems and its applications. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2882173

    Google Scholar 

  3. Li, D., Chen, C.L.P., Liu, Y., Tong, S.: Neural network controller design for a class of nonlinear delayed systems with time-varying state constraints. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://doi.org/10.1109/TNNLS.2018.2886023

    Google Scholar 

  4. Liang, H., Zhang, Z., Choon, K.A.: Event-triggered fault detection and isolation of discrete-time systems based on geometric technique. IEEE Trans. Circuits Syst. II: Express Briefs. https://doi.org/10.1109/TCSI-I.2019.2907706

  5. Ma, T., Zhang, Z., Cui, B.: Adaptive consensus of multi-agent systems via odd impulsive control. Neurocomputing 321, 139–145 (2018)

    Article  Google Scholar 

  6. Ma, T., Yu, T., Cui, B.: Adaptive synchronization of multi-agent systems via variable impulsive control. J. Frankl. Inst. 355(15), 7490–7508 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zou, W., Xiang, Z., Ahn, C.K.: Mean square leader-following consensus of second-order nonlinear multi-agent systems with noises and unmodeled dynamics. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2862140

    Google Scholar 

  8. Cao, L., Li, H., Wang, N., Zhou, Q.: Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2873971

  9. Zou, W., Xiang, Z.: Event-triggered leader-following consensus of non-linear multi-agent systems with switched dynamics. IET Control Theory Appl. (2018). https://doi.org/10.1049/iet-cta.2018.5126

    Google Scholar 

  10. Sun, N., Yang, T., Fang, Y., Wu, Y., Chen, H.: Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Trans. Syst Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2871627

    Google Scholar 

  11. Sun, N., Yang, T., Chen, H., Fang, Y., Qian, Y.: Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2017.2765183

    Google Scholar 

  12. Liang, H., Zhang, L., Karimi, H., Zhou, Q.: Fault estimation for a class of nonlinear semi-Markovian jump systems with partly unknown transition rates and output quantization. Int. J. Robust Nonlinear Control 28(18), 5962–5980 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zou, A., Kumar, K.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70(2), 1283–1296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qi, H., Iyengar, S., Chakrabarty, K.: Multiresolution data integration using mobile agents in distributed sensor networks. IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) 31(3), 383–391 (2001)

    Article  Google Scholar 

  15. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.: Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles. J. Intell. Robot. Syst. 84(1–4), 469–492 (2016)

    Article  Google Scholar 

  16. Prorok, A., Hsieh, M.A., Kumar, V.: The impact of diversity on optimal control policies for heterogeneous robot swarms. IEEE Trans. Robot. 33(2), 346–358 (2017)

    Article  Google Scholar 

  17. Zhang, Y., Li, H., Sun, J., He, W.: Cooperative adaptive event-triggered control for multi-agent systems with actuator failures. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2883907

    Google Scholar 

  18. Liang, H., Zhou, Y., Ma, H., Zhou, Q.: Adaptive distributed observer approach for cooperative containment control of nonidentical networks. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 299–307 (2019)

    Article  Google Scholar 

  19. Shahvali, M., Shojaei, K.: Distributed adaptive neural control of nonlinear multi-agent systems with unknown control directions. Nonlinear Dyn. 83(4), 2213–2228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, X., Li, Z., Gao, L.: Distributed adaptive tracking control for multi-agent systems with uncertain dynamics. Nonlinear Dyn. 90(4), 2729–2744 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Y., Sun, J., Liang, H., Li, H.: Event-triggered adaptive tracking control for multi-agent systems with unknown disturbances. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2869084

    Google Scholar 

  22. Zhang, Z., Liang, H., Wu, C., Ahn, C.K.: Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and random actuator failure. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2891236

    Google Scholar 

  23. Zhou, Q., Zhao, S., Li, H., Lu, R., Wu, C.: Adaptive neural network tracking control for robotic manipulators with dead-zone. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2018.286937

  24. Ogren, P., Fiorelli, E., Leonard, N.E.: Consensus and cooperation in networked multi-agent systems. Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. Autom. Control 49(8), 1292–1302 (2004)

    Article  MATH  Google Scholar 

  25. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51(3), 504–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tao, G., Kokotovic, P.: Adaptive control of plants with unknown dead-zones. IEEE Trans. Autom. Control 39(1), 59–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, Q., Shi, P.: Output consensus control of multiagent systems with unknown nonlinear dead zone. IEEE Trans. Syst. Man Cybern. Syst. 46(10), 1329–1337 (2016)

    Article  Google Scholar 

  28. Chen, B., Zhang, H., Liu, X., Lin, C.: Neural observer and adaptive neural control design for a class of nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4261–4271 (2018)

    Article  Google Scholar 

  29. Zhang, Z., He, Y., Wu, M., Wang, Q.: Exponential synchronization of neural networks with time-varying delays via dynamic intermittent output feedback control. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2017.2753944

    Google Scholar 

  30. Mazenc, F., Bliman, P.: Backstepping design for time-delay nonlinear systems. IEEE Trans. Autom. Control 51(1), 149–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, J., Wen, C., Wang, W.: Adaptive backstepping control of uncertain systems with unknown input time-delay. Automatica 45(6), 1415–1422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z., Hu, G.: Consensus of linear multi-agent systems with communication and input delays. ACTA Autom. Sin. 39(7), 1133–1140 (2013)

    MathSciNet  Google Scholar 

  33. Zhu, W., Chen, B., Yang, J.: Consensus of fractional-order multi-agent systems with input time delay. Fract. Calc. Appl. Anal. 20(1), 52–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, P., Jia, Y.: Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies. IEEE Trans. Autom. Control 55(3), 778–784 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liang, H., Zhang, Y., Huang, T., Ma, H.: Prescribed performance cooperative control for multiagent systems with input quantization. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2893645

    Google Scholar 

  36. Ma, H., Li, H., Liang, H., Dong, G.: Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2019.2896843

  37. Swaroop, D., Hedrick, J., Yip, P., Gerdes, J.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ma, J., Zheng, Z., Li, P.: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. IEEE Trans. Cybern. 45(4), 728–741 (2015)

    Article  Google Scholar 

  39. Zhang, T., Ge, S.S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44(7), 1895–1903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, X., Wu, X., Luo, X.: Adaptive neural network dynamic surface control for a class of nonlinear systems with uncertain time delays. Int. J. Autom. Comput. 13(4), 1–8 (2016)

    Article  Google Scholar 

  41. Li, Y., Yang, G., Tong, S.: Fuzzy adaptive distributed event-triggered consensus control of uncertain nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2812216

    Google Scholar 

  42. Khanesar, M., Kaynak, O., Yin, S., Gao, H.: Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans. Fuzzy Syst. 23(1), 205–214 (2015)

    Article  Google Scholar 

  43. Lu, K., Liu, Z., Lai, G., Zhang, Y., Chen, C.P.: Adaptive fuzzy tracking control of uncertain nonlinear systems subject to actuator dead zone with piecewise time-varying parameters. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2882170

    Google Scholar 

  44. Zhang, Y., Sun, J., Liang, H., Li, H.: Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2869084

    Google Scholar 

  45. Li, Y., Tong, S., Liu, Y., Li, T.: Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach. IEEE Trans. Fuzzy Syst. 22(1), 164–176 (2014)

    Article  Google Scholar 

  46. Chen, K., Wang, J., Zhang, Y., Liu, Z.: Leader-following consensus for a class of nonlinear strick-feedback multiagent systems with state time-delays. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2813399

    Google Scholar 

  47. Wang, L., Ying, H.: Adaptive fuzzy systems and control: design and stability analysis. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 3(2), 187 (1995)

  48. Chen, B., Liu, X., Lin, C.: Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients. IEEE Trans. Fuzzy Syst. 26(3), 1732–1743 (2018)

    Article  Google Scholar 

  49. Wang, W., Wang, D., Peng, Z.: Predictor-based adaptive dynamic surface control for consensus of uncertain nonlinear systems in strict-feedback form. Int. J. Adapt. Control Signal Process. 31(1), 68–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, W., Tong, S.: Adaptive fuzzy bounded control for consensus of multiple strict-feedback nonlinear systems. IEEE Trans. Cybern. 48(2), 522–531 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjing Liang.

Ethics declarations

Funding

This work was partially supported by the National Natural Science Foundation of China (61703051), the Science and Technology Innovation Funds of Dalian (under Grant No. 2018J11CY022), Guangdong Natural Science Funds for Distinguished Young Scholar (2017A- 030306014), Department of Education of Guangdong Province (2017KZDXM027), Department of Education of Liaoning Province (LZ2017001), PhD Start-up Fund of Liaoning Province (20170520124), and Innovative Research Team Program of Guangdong Province Science Foundation (2018B030312006).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liang, H., Zhang, Y. et al. Adaptive cooperative control for a class of nonlinear multi-agent systems with dead zone and input delay. Nonlinear Dyn 96, 2707–2719 (2019). https://doi.org/10.1007/s11071-019-04954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04954-2

Keywords

Navigation