Skip to main content
Log in

Swarm Distribution and Deployment for Cooperative Surveillance by Micro-Aerial Vehicles

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The task of cooperative surveillance of pre-selected Areas of Interest (AoI) in outdoor environments by groups of closely cooperating Micro Aerial Vehicles (MAVs) is tackled in this paper. In the cooperative surveillance mission, finding distributions of the MAVs in the environment to properly cover the AoIs and finding feasible trajectories to reach the obtained surveillance locations from the initial depot are crucial tasks that have to be fulfilled. In addition, motion constraints of the employed MAVs, environment constraints (e.g. non-fly zones), and constraints imposed by localization of members of the groups need to be satisfied in the planning process. We formulate the task of cooperative surveillance as a single high-dimensional optimization problem to be able to integrate all these requirements. Due to numerous constraints that have to be satisfied, we propose to solve the problem using an evolutionary-based optimization technique. An important aspect of the proposed method is that the cooperating MAVs are localized relatively to each other, rather than using a global localization system. This increases robustness of the system and its deploy-ability in scenarios, in which compact shapes of the MAV group with short relative distances are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krajnik, T., Nitsche, M., Faigl, J., Vanek, P., Saska, M., Preucil, L., Duckett, T., Mejail, M.: A practical multirobot localization system. In: Accepted by Journal of Intelligent & Robotic Systems (2014)

  2. Faigl, J., Krajník, T., Chudoba, J., Preucil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: Proc. of IEEE International Conference on Robotics and Automation (2013)

  3. Saska, M., Chudoba, J., Precil, L., Thomas, J., Loianno, G., Tresnak, A., Vonasek, V., Kumar, V.: Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (2014)

  4. Schmickl, T., Crailsheim, K.: Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Autonom. Robots 25, 171–188 (2008)

    Article  Google Scholar 

  5. Teacy, W., Nie, J., McClean, S., Parr, G.: Maintaining connectivity in uav swarm sensing. In: IEEE GLOBECOM Workshops (2010)

  6. Berman, S., Halasz, A., Hsieh, M., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

    Article  Google Scholar 

  7. Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Strategies for energy optimisation in a swarm of foraging robots. In: Swarm Robotics, vol. 4433, pp. 14–26 (2007)

  8. Hamann, H., Worn, H.: A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intell. 2, 209–239 (2008)

    Article  Google Scholar 

  9. Winfield, A., Liu, W., Nembrini, J., Martinoli, A.: Modelling a wireless connected swarm of mobile robots. Swarm Intell. 2, 241–266 (2008)

    Article  Google Scholar 

  10. Saska, M., Vakula, J., Preucil, L: Swarms of micro aerial vehicles stabilized under a visual relative localization. In: ICRA2014: Proceedings of 2014 IEEE International Conference on Robotics and Automation (2014)

  11. Kumar, M., Garg, D., Kumar, V.: Segregation of heterogeneous units in a swarm of robotic agents. IEEE Trans. Autom. Control 55(3), 743–748 (2010)

    Article  MathSciNet  Google Scholar 

  12. Saska, M: MAV-swarms: Unmanned aerial vehicles stabilized along a given path using onboard relative localization. In: Proceedings of 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (2015)

  13. Turpin, M., Michael, N., Kumar, V.: Trajectory design and control for aggressive formation flight with quadrotors. Autonom. Robots 33(1–2), 143–156 (2012). [Online]. Available. doi:10.1007/s10514-012-9279-y

    Article  Google Scholar 

  14. Bennet, D. J., McInnes, C. R.: Verifiable control of a swarm of unmanned aerial vehicles. J. Aerospace Eng. 223(7), 939–953 (2009)

    Google Scholar 

  15. Barnes, L., Garcia, R., Fields, M., Valavanis, K.: Swarm formation control utilizing ground and aerial unmanned systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)

  16. Holland, O., Woods, J., Nardi, R., Clark, A.: Beyond swarm intelligence: The UltraSwarm. In: IEEE Swarm Intelligence Symposium, pp. 217–224 (2005)

  17. Brkle, A., Leuchter, S.: Development of micro uav swarms. In: Autonome Mobile Systeme 2009, ser. Informatik aktuell, pp. 217–224 (2009)

  18. Cai, N., Xi, J.-X., Zhong, Y.-S.: Brief paper swarm stability of high-order linear time-invariant swarm systems. Control Theory Appl. IET 5(2), 402–408, 20 (2011)

    Article  MathSciNet  Google Scholar 

  19. Cheah, C.C., Hou, S.P., Slotine, J.J.E.: Region-based shape control for a swarm of robots. Automatica 45(10), 2406–2411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom 20(2), 243–255 (2004)

    Article  Google Scholar 

  21. Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos, E.: Adaptive-based distributed cooperative multi-robot coverage. In: American Control Conference (ACC) (2011)

  22. Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos, E.: Adaptive-based, scalable design for autonomous multi-robot surveillance. In: IEEE CDC (2010)

  23. Mathews, E., Graf, T., Kulathunga, K.S.S.B.: Biologically inspired swarm robotic network ensuring coverage and connectivity. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 84–90 (2012)

  24. Liu, J.-z., Wang, B.-l., Ao, J.-y., Wang, S., Wu, Q.: An immune-swarm intelligence based algorithm for deterministic coverage problems of wireless sensor networks. J. Central South Univ. 19(11), 3154–3161 (2012)

    Article  Google Scholar 

  25. Maza, I., Ollero, A.: Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Alami, R., Chatila, R., Asama, H. (eds.) Distributed Autonomous Robotic Systems 6, pp 221–230. Springer, Japan (2007)

    Chapter  Google Scholar 

  26. Ha, T: The UAV Continuous Coverage Problem. Air Force Institute of Technology (2010)

  27. Schwager, M., Julian, B. J., Rus, D.: Optimal coverage for multiple hovering robots with downward facing cameras. In: IEEE ICRA (2009)

  28. Doitsidis, L., Renzaglia, A., Weiss, S., Kosmatopoulos, E., Scaramuzza, D., Siegwart, R: 3d surveillance coverage using maps extracted by a monocular slam algorithm. In: IEEE/RSJ IROS (2011)

  29. Saska, M., Hess, M., Schilling, K.: Hierarchical spline path planning method for complex environments. In: Proc. of the 4th International Conference on Informatics in Control, Automation and Robotics (2007)

  30. Saska, M., Hess, M., Schilling, K.: Voronoi strains - a spline path planning algorithm for complex environments. In: Proc. of the IASTED conference on Artificial Intelligence and Applications (2007)

  31. Mouret, J.-B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: An empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  32. Vonasek, V., Saska, M., Kosnar, K., Preucil, L.: Global motion planning for modular robots with local motion primitives. In: IEEE ICRA (2013)

  33. Saska, M., Vonasek, V., Krajnik, T., Preucil, L.: Coordination and navigation of heterogeneous MAV–UGV formations localized by a ‘hawk-eye’-like Approach Under A Model Predictive Control Scheme. Int. J. Robot. Res. 33(10), 1393–1412 (2014)

    Article  Google Scholar 

  34. Saska, M., Krajnik, T., Vonasek, V., Kasl, Z., Spurny, V., Preucil, L: Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups. J. Intell. Robot. Syst. 73 (1–4), 603–622 (2014)

    Article  Google Scholar 

  35. Saska, M., Krajnik, T., Vonasek, V., Vanek, P., Preucil, L.: Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles. In: Proceedings of 2013 International Conference on Unmanned Aircraft Systems (2013)

  36. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. Int. Conf. Neural Netw. IEEE 4, 1942–1948 (1995)

    Article  Google Scholar 

  37. O’Rourke, J: Art Gallery Theorems and Algorithms. Oxford University Press (1987)

  38. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. In: TR 98-11, Computer Science Dept. Iowa State University (1998)

  39. Turpin, M., Michael, N., Kumar, V.: Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In: International Conference on Robotics and Automation. Karlsruhe, Germany (2013)

    Book  Google Scholar 

  40. Lee, T., Leoky, M., McClamroch, N.: Geometric tracking control of a quadrotor uav on se(3). In: 49th IEEE Conference on Decision and Control (CDC) (2010)

  41. Saska, M., Baca, T., Thomas, J., Chudoba, J., Preucil, L., Krajnik, T., Faigl, J., Loianno, G., Kumar, V.: System for deployment of groups of micro aerial vehicles in gps-denied environments using onboard visual relative localization. Accepted for Autonomous Robots (2016)

  42. Movies, Movies of experiments of the mav cooperative surveillance. http://imr.felk.cvut.cz/mavsurveillance/ [online] [cit. 2014-12-12]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Saska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saska, M., Vonásek, V., Chudoba, J. et al. Swarm Distribution and Deployment for Cooperative Surveillance by Micro-Aerial Vehicles. J Intell Robot Syst 84, 469–492 (2016). https://doi.org/10.1007/s10846-016-0338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0338-z

Keywords

Navigation