Skip to main content
Log in

Fuzzy adaptive finite-time consensus tracking control of high-order nonlinear multi-agent networks with dead zone

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies distributed singularity-free finite-time consensus tracking control for quite a large class of high-order (powers are positive odd integers) nonlinear multi-agent networks in the presence of unknown asymmetric dead zone. Achieving finite-time consensus tracking for such dynamics is extremely challenging because feedback linearization and backstepping methods successfully developed for low-order systems fail to work, and some appropriate exponential terms typically arising from finite-time stability are difficult to design due to the existence of high powers and strong couplings among distinct agents. To this purpose, an adding-one-power-integrator methodology is skillfully incorporated into the finite-time stability theory so as to stabilize the closed-loop system. Over the course of design, a variable-separable lemma is utilized to extract the unknown asymmetric dead-zone input in a “linear-like” manner and fuzzy logic systems are utilized to estimate the unknown system continuous nonlinearities over some compact sets. The singularity issue typical of finite-time control is overcome by delicately introducing a switching function. It is rigorously proved that the consensus tracking error eventually converges to a residual set, whose size can be made as small as desired, in finite time, while guaranteeing the boundedness of all closed-loop signals. Comparative simulations are finally provided to verify the effectiveness of the presented scheme on the existing control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ren, W., Chao, H.Y., Bourgeous, W., Sorensen, N., Chen, Y.Q.: Experimental validation of consensus algorithms for multivehicle cooperative control. IEEE Trans. Control Syst. Technol. 16(4), 745–752 (2008)

    Article  Google Scholar 

  2. Wu, L.B., Park, J.H., Xie, X.P., Ren, Y.W., Yang, Z.C.: Distributed adaptive neural network consensus for a class of uncertain nonaffine nonlinear multi-agent systems. Nonlinear Dyn. 100, 1243–1255 (2020)

    Article  Google Scholar 

  3. Haghshenas, H., Badamchizadeh, M.A., Baradarannia, M.: Containment control of heterogeneous linear multi-agent systems. Automatica 54, 210–216 (2015)

    Article  MathSciNet  Google Scholar 

  4. Liu, D.C., Liu, Z., Chen, C.L.P., Zhang, Y.: Distributed adaptive neural control for uncertain multi-agent systems with unknown actuator failures and unknown dead zones. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-019-05321-x

    Article  MATH  Google Scholar 

  5. Wang, W., Liang, H.J., Zhang, Y.H., Li, T.S.: Adaptive cooperative control for a class of nonlinear multi-agent systems with dead zone and input delay. Nonlinear Dyn. 96, 2707–2719 (2019)

    Article  Google Scholar 

  6. Liang, H.J., Zhang, Y.H., Huang, T.W., Ma, H.: Prescribed performance cooperative control for multiagent systems with input quantization. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2893645

    Article  Google Scholar 

  7. Lv, M.L., Schutter, B.D., Yu, W.W., Baldi, S.: Adaptive asymptotic tracking for a class of uncertain switched positive compartmental models with application to anesthesia. IEEE Trans. Syst., Man, Cybern., Syst. (2019). https://doi.org/10.1109/TSMC.2019.2945590

  8. Wang, H., Yu, W.W., Ding, Z.T., Yu, X.H.: Tracking consensus of general nonlinear multiagent systems with external disturbances under directed networks. IEEE Trans. Autom. Control 64(11), 4772–4779 (2019)

    Article  MathSciNet  Google Scholar 

  9. Guo, X.Y., Liang, H.J., Pan, Y.N.: Observer-based adaptive fuzzy tracking control for stochastic nonlinear multi-agent systems with dead-zone input. Appl. Math. Comput. 379, 1–22 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Liang, H.J., Liu, G.L., Huang, T.W., Lam, H.K., Wang, B.H.: Cooperative fault-tolerant control for networks of stochastic nonlinear systems with nondifferential saturation nonlinearity. IEEE Trans. Syst., Man, Cybern., Syst. (2020). https://doi.org/10.1109/TSMC.2020.3020188

  11. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York, USA (1995)

    MATH  Google Scholar 

  12. Wang, N., Wen, G.H., Wang, Y., Zhang, F., Ali, Z.: Fuzzy adaptive cooperative consensus tracking of high-order nonlinear multi-agent networks with guaranteed performances. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3051002

    Article  Google Scholar 

  13. Qian, C.J., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Autom. Control 47(10), 1710–1715 (2002)

    Article  MathSciNet  Google Scholar 

  14. Lin, W., Qian, C.J.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39, 1339–1351 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Sun, Z.Y., Zhang, X.H., Xie, X.J.: Global continuous output-feedback stabilization for a class of high-order nonlinear systems with multiple time delays. J. Frankl. I. 351(8), 4334–4356 (2014)

    Article  MathSciNet  Google Scholar 

  16. Zhang, L., Wang, X.T.: Partial eigenvalue assignment for high order system by multi-input control. Mech. Syst. Signal Process. 42(1), 129–136 (2014)

    Article  Google Scholar 

  17. Shang, Y., Chen, B., Lin, C.: Neural adaptive tracking control for a class of high-order non-strict feedback nonlinear multi-agent systems. Neurocomputing 3(16), 59–67 (2018)

    Article  Google Scholar 

  18. Wu, Y., Liang, H.J., Zhang, Y.H., Ahn, C.K.: Cooperative adaptive dynamic surface control for a class of high-order stochastic nonlinear multiagent systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2986332

    Article  Google Scholar 

  19. Lv, M.L., Yu, W.W., Cao, J.D., Baldi, S.: Consensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based control. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3028171

    Article  Google Scholar 

  20. Lv, M.L., Yu, W.W., Cao, J.D., Baldi, S.: A separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3070824

    Article  Google Scholar 

  21. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  22. Wang, F., Chen, B., Liu, X.P., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1207–1216 (2018)

    Article  Google Scholar 

  23. Pan, Y.N., Du, P.H., Xue, H., Lam, H.K.: Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2999746

    Article  Google Scholar 

  24. Lv, M.L., Li, Y.M., Pan, W., Baldi, S.: Finite-time fuzzy adaptive constrained tracking control for hypersonic flight vehicles with singularity-free switching. IEEE-ASME T. Mech. (2021). https://doi.org/10.1109/TMECH.2021.3090509

    Article  Google Scholar 

  25. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  Google Scholar 

  26. Wang, Y.J., Song, Y.D.: Fraction dynamic-surface-based neuroadaptive finite-time containment control of multiagent systems in nonaffine pure-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 678–689 (2017)

    Article  MathSciNet  Google Scholar 

  27. Du, P.H., Pan, Y.N., Li, H.Y., Lam, H.K.: Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2992632

    Article  Google Scholar 

  28. Wang, H., Yu, W.W., Ren, W., Lu, J.H.: Distributed adaptive finite-time consensus for second-order multiagent systems with mismatched disturbances under directed networks. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2903218

    Article  Google Scholar 

  29. SharghiMahdi, A., Baradarannia, M., Hashemzadeh, F.: Finite-time-estimation-based surrounding control for a class of unknown nonlinear multi-agent systems. Nonlinear Dyn. 96(3), 1795–1804 (2019)

    Article  Google Scholar 

  30. Du, H.B., Wen, G.H., Cheng, Y.Y., He, Y.G., Jia, R.T.: Distributed finite-time cooperative control of multiple high-order nonholonomic mobile robots. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2998–3006 (2017)

    Article  MathSciNet  Google Scholar 

  31. Chen, D.X., Liu, X.L., Yu, W.W.: Finite-time fuzzy adaptive consensus for heterogeneous nonlinear multi-agent systems. IEEE Trans. Netw. Sci. Eng. (2020). https://doi.org/10.1109/TNSE.2020.3013528

    Article  MathSciNet  Google Scholar 

  32. Du, H.B., Wen, G.H., Chen, G.R., Cao, J.D., Alsaadi, F.E.: A distributed finite-time consensus algorithm for higher-order leaderless and leader-following multiagent systems. IEEE Trans. Syst., Man, Cybern., Syst. 47(7), 1625–1634 (2017)

  33. Lv, M.L., Yu, W.W., Baldi, S.: The set-invariance paradigm in fuzzy adaptive DSC design of large-scale nonlinear input-constrained systems. IEEE Trans. Syst., Man, Cybern., Syst. 51(2), 1035–1045 (2021)

  34. Liang, H.J., Liu, G.L., Zhang, H.G., Huang, T.W.: Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 32(5), 2239–2250 (2021)

    Article  MathSciNet  Google Scholar 

  35. Lv, M.L., Schutter, B.D., Yu, W.W., Zhang, W.Q., Baldi, S.: Nonlinear systems with uncertain periodically disturbed control gain functions: adaptive fuzzy control with invariance properties. IEEE Trans. Fuzzy Syst. 28(4), 746–757 (2020)

    Article  Google Scholar 

  36. Tong, S.C., Li, Y.M.: Adaptive fuzzy decentralized output feedback control for nonlinear large-scale systems with unknown dead zone inputs. IEEE Trans. Fuzzy Syst. 21(5), 913–925 (2013)

    Article  Google Scholar 

  37. Li, H.Y., Zhao, S.Y., He, W., Lu, R.Q.: Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)

    Article  MathSciNet  Google Scholar 

  38. Liu, Z., Wang, F., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive tracking control for a class of nonlinear systems with a fuzzy dead-zone input. IEEE Trans. Fuzzy Syst. 23(1), 193–204 (2015)

    Article  Google Scholar 

  39. Hua, C.C., Zhang, L.L., Guan, X.P.: Distributed adaptive neural network output tracking of leader-following high-order stochastic nonlinear multiagent systems with unknown dead-zone input. IEEE Trans. Cybern. 47(1), 177–185 (2017)

    Article  Google Scholar 

  40. Wang, G., Wang, C.L., Li, L.: Fully distributed low-complexity control for nonlinear strict-feedback multiagent systems with unknown dead-zone inputs. IEEE Trans. Syst., Man, Cybern., Syst. (2017). https://doi.org/10.1109/TSMC.2017.2759305

  41. Lv, M.L., Baldi, S., Liu, Z.C.: The non-smoothness problem in disturbance observer design: a set-invariance-based adaptive fuzzy control method. IEEE Trans. Fuzzy Syst. 27(3), 598–604 (2019)

    Article  Google Scholar 

  42. Wang, H.Q., Kang, S.J., Zhao, X.D., Xu, N., Li, T.S.: Command filter-based adaptive neural control design for nonstrict-feedback nonlinear systems with multiple actuator constraints. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3079129

    Article  Google Scholar 

  43. Hong, Y., Pan, C.: A lower bound for the smallest singular value. Linear Algebra Appl. 172, 27–32 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2019R1A5A8080290).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju H. Park or Fan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Step  \(i,1~\left( {i \in \left\{ {1, \ldots ,M} \right\} } \right) \): According to (1), differentiating both sides of (7) yields

$$\begin{aligned} {{\dot{z}}_{i,1}}&= \left( {{d_i} + {\mu _i}} \right) \left( h_{i,1}({x_{i,1}}){x_{i,2}^{{r_{i,1}}} + {\varphi _{i,1}}({x_i})} \right) - {\mu _i}\varphi \left( {{x_0},t} \right) \nonumber \\&\quad - \sum \limits _{j \in {{\mathcal {N}}_i}} {{a_{ij}}\left( {h_{j,1}({x_{j,1}})x_{j,2}^{{r_{j,1}}} + {\varphi _{j,1}}({x_j})} \right) }. \end{aligned}$$
(16)

Consider the following Lyapunov function as

$$\begin{aligned} {V_{i,1}} = \frac{{z_{i,1}^{{s_i} - {r_{i,1}} + 2}}}{{{s_i} - {r_{i,1}} + 2}} + \frac{1}{{2{k_{i,1}}}}{\tilde{\varXi }} _{i,1}^2. \end{aligned}$$
(17)

It follows from (16) that the time derivative of \({V_{i,1}}\) is

$$\begin{aligned} {{\dot{V}}_{i,1}}&=z_{i,1}^{{s_i} - {r_{i,1}} + 1}\left( {{d_i} + {\mu _i}} \right) h_{i,1}({x_{i,1}})\left( {x_{i,2}^{{r_{i,1}}} - \nu _{i,1}^{{r_{i,1}}}} \right) \nonumber \\&\quad -\frac{1}{{{k_{i,1}}}}{{{\tilde{\varXi }} }_{i,1}}{{\dot{{\hat{\varXi }}} }_{i,1}}+ z_{i,1}^{{s_i} - {r_{i,1}} + 1}{{\mathcal {F}}_{i,1}}({Z_{i,1}})\nonumber \\&\quad + z_{i,1}^{\left( {{s_i} - {r_{i,1}} + 1} \right) \beta }\left( {{d_i} + {\mu _i}} \right) h_{i,1}({x_{i,1}})\nu _{i,1}^{{r_{i,1}}} \end{aligned}$$
(18)

with \({{\mathcal {F}}_{i,1}}({Z_{i,1}})\) being a function defined by

$$\begin{aligned} {{\mathcal {F}}_{i,1}}({Z_{i,1}}) =&-\left( {{d_i} + {\mu _i}} \right) h_{i,1}({x_{i,1}})\nu _{i,1}^{{r_{i,1}}}\left( z_{i,1}^{\left( {{s_i} - {r_{i,1}} + 1} \right) \left( {\beta - 1} \right) }-1\right) \nonumber \\&\quad - \sum \limits _{j \in {{\mathcal {N}}_i}} {{a_{ij}}\left( {h_{j,1}({x_{j,1}})x_{j,2}^{{r_{j,1}}} + {\varphi _{j,1}}({x_j})} \right) } \nonumber \\&\quad + \left( {{d_i} + {\mu _i}} \right) {\varphi _{i,1}}({x_i})- {\mu _i}\varphi \left( {{x_0},t} \right) , \end{aligned}$$
(19)

where \({Z_{i,1}} = {\left[ x_i^T,x_{j,{j \in {{\mathcal {N}}_i}}}^T,{\mu _i}x_0\right] ^T}\). To facilitate the control design, we use FLS \(\varTheta _{i,1}^{ * T}{\psi _{i,1}}({Z_{i,1}})\) to approximate the unknown continuous function \({{\mathcal {F}}_{i,1}}({Z_{i,1}})\), it holds that

$$\begin{aligned} \begin{aligned} {{\mathcal {F}}_{i,1}}({Z_{i,1}}) =\varTheta _{i,1}^{ * T}{\psi _{i,1}}({Z_{i,1}}) + {o_{i,1}}({Z_{i,1}}),{\mathrm{}}\left| {{o_{i,1}}({Z_{i,1}})} \right| {\le } {\varpi _{i,1}}, \end{aligned}\nonumber \\ \end{aligned}$$
(20)

where \({o_{i,1}}({Z_{i,1}})\) is an approximation error and \({\varpi _{i,1}} > 0\). Using Lemma 3 yields

$$\begin{aligned}&z_{i,1}^{{s_i} - {r_{i,1}} + 1}{{\mathcal {F}}_{i,1}} = z_{i,1}^{{s_i} - {r_{i,1}} + 1}\varTheta _{i,1}^{*T}{\psi _{i,1}} + z_{i,1}^{{s_i} - {r_{i,1}} + 1}{o_{i,1}}\nonumber \\&\le \frac{{{s_i} - {r_{i,1}} + 1}}{{{s_i} + 1}}\phi _{i,1}^{{{{\bar{r}}}_{i,1}}}z_{i,1}^{{s_i} + 1}{\left\| {\varTheta _{i,1}^*} \right\| ^{{{{\bar{r}}}_{i,1}}}}{\left( {\psi _{i,1}^T{\psi _{i,1}}} \right) ^\frac{{{{{\bar{r}}}_{i,1}}}}{{\mathrm{2}}}}\nonumber \\&\quad + \frac{{{r_{i,1}}}}{{{s_i} + 1}}\lambda _{i,1}^{ - {{}{\underline{r}}_{i,1}}}\varpi _{i,1}^{{{}{\underline{r}}_{i,1}}} + \frac{{{r_{i,1}}}}{{{s_i} + 1}}\phi _{i,1}^{ - {{}{\underline{r}}_{i,1}}}\nonumber \\&\quad + \frac{{{s_i} - {r_{i,1}} + 1}}{{{s_i} + 1}}\lambda _{i,1}^{{{{\bar{r}}}_{i,1}}}z_{i,1}^{{s_i} + 1}\nonumber \\&\le z_{i,1}^{{s_i} + 1}\Big ( {\phi _{i,1}^{{{{\bar{r}}}_{i,1}}}{\varXi _{i,1}}{{\left( {\psi _{i,1}^T{\psi _{i,1}}} \right) }^\frac{{{{{\bar{r}}}_{i,1}}}}{{\mathrm{2}}}}{\mathrm{+ }}\lambda _{i,1}^{{{{\bar{r}}}_{i,1}}}} \Big ){\mathrm{+ }}{b_{i,1}}, \end{aligned}$$
(21)

where \({\varXi _{i,1}}{\mathrm{= }}{\left\| {\varTheta _{i,1}^*} \right\| ^{{{{\bar{r}}}_{i,1}}}}\) and \({b_{i,1}} = \phi _{i,1}^{ - {{}{\underline{r}}_{i,1}}} + \lambda _{i,1}^{ - {{}{\underline{r}}_{i,1}}}\varpi _{i,1}^{{{}{\underline{r}}_{i,1}}}\). Recalling (21), we can rewrite (18) as

$$\begin{aligned} {{\dot{V}}_{i,1}}&\le z_{i,1}^{{s_i} + 1}\Big ( {\phi _{i,1}^{{{{\bar{r}}}_{i,1}}}{\varXi _{i,1}}{{\left( {\psi _{i,1}^T{\psi _{i,1}}} \right) }^\frac{{{{{\bar{r}}}_{i,1}}}}{{\mathrm{2}}}}{\mathrm{+ }}\lambda _{i,1}^{{{{\bar{r}}}_{i,1}}}} \Big )- \frac{{{{{\tilde{\varXi }} }_{i,1}}{{\dot{{\hat{\varXi }}} }_{i,1}}}}{{{k_{i,1}}}} \nonumber \\&\quad + z_{i,1}^{{s_i} - {r_{i,1}} + 1}\left( {{d_i} + {\mu _i}} \right) h_{i,1}({x_{i,1}})\left( {x_{i,2}^{{r_{i,1}}} - \nu _{i,1}^{{r_{i,1}}}} \right) \nonumber \\&\quad + z_{i,1}^{\left( {{s_i} - {r_{i,1}} + 1} \right) \beta }\left( {{d_i} + {\mu _i}} \right) h_{i,1}({x_{i,1}})\nu _{i,1}^{{r_{i,1}}}+ {b_{i,1}}. \end{aligned}$$
(22)

In light of (8), (11) and (12), when \(\left| z_{i,1}\right| \ge {\tau _{i,1}}\), (22) can be rewritten as

(23)

Apparently, when \(\left| z_{i,1}\right| < {\tau _{i,1}}\), we can obtain the derivative of \(V_{i,1}\) as

(24)

Under the condition of \(z_{i,1}<{\tau _{i,1}}<1\), one has

$$\begin{aligned}&- \frac{1}{2}\tau _{i,1}^{\beta - 2}\left( {\left( {4 - \beta } \right) z_{i,1}^2 + \left( {\beta - 2} \right) \tau _{i,1}^{ - 2}z_{i,1}^4} \right) \nonumber \\&\quad = - \tau _{i,1}^{\beta {-} 2}z_{i,1}^2 {-} \frac{1}{2}\left( {2 {-} \beta } \right) \tau _{i,1}^{\beta {-} 2}z_{i,1}^2 {+} \frac{1}{2}\left( {2 {-} \beta } \right) \tau _{i,1}^{\beta {-} 4}z_{i,1}^4\nonumber \\&\quad \le {-} \tau _{i,1}^{\beta {-} 2}z_{i,1}^2 {-} \frac{1}{2}\left( {2 {-} \beta } \right) \tau _{i,1}^{\beta {-} 2}z_{i,1}^2 {+} \frac{1}{2}\left( {2 {-} \beta } \right) \tau _{i,1}^{\beta {-} 2}z_{i,1}^2\nonumber \\&\quad = - \tau _{i,1}^{\beta - 2}z_{i,1}^2 - z_{i,1}^\beta + z_{i,1}^\beta \nonumber \\&\quad \le - z_{i,1}^\beta + \tau _{i,1}^\beta . \end{aligned}$$
(25)

Substituting (25) into (24) gives

(26)

In theory, to get the small local consensus tracking error, we can choose \(\tau _{i,1}\) small enough. So, the subsequent stability analysis is done for the case of \(\left| z_{i,1}\right| \ge {\tau _{i,1}}\). By using Lemmas 2 and 3, it follows that

$$\begin{aligned}&\left| {z_{i,1}^{{s_i} - {r_{i,1}} + 1}h_{i,1}({x_{i,1}})\left( {x_{i,2}^{{r_{i,1}}} - \nu _{i,1}^{{r_{i,1}}}} \right) } \right| \nonumber \\&\quad \le {r_{i,1}}{{\bar{h}}_{i,1}}\left| {z_{i,1}^{{s_i} {-} {r_{i,1}} {+} 1}} \right| \left| {{z_{i,2}}} \right| \Big ( {x_{i,2}^{{r_{i,1}} {-} 1} {+} {{\left( {{z_{i,1}^\beta }{\xi _{i,1}}} \right) }^{{r_{i,1}} {-} 1}}} \Big )\nonumber \\&\quad \le \frac{1}{{{s_i} + 1}}\hbar _{i,1}^{ - {s_i}}{\big ( {{{\mathrm{2}}^{{r_{i,1}} - {\mathrm{2}}}}{r_{i,1}}{{\bar{h}}_{i,1}}\xi _{i,1}^{{r_{i,1}} - 1}} \big )^{{s_i} + 1}}z_{i,2}^{{s_i} + 1} \nonumber \\&\qquad + \frac{{2{s_i}}}{{{s_i} + 1}}{\hbar _{i,1}}z_{i,1}^{{s_i} + 1} + \frac{{{s_i} - {r_{i,1}} + 1}}{{{s_i} + 1}}{\hbar _{i,1}}z_{i,1}^{{s_i} + 1}\nonumber \\&\qquad + {\underline{r}}_{i,1}^{ - 1}\hbar _{i,1}^{ - \frac{{{s_i} - {r_{i,1}} + 1}}{{{r_{i,1}}}}}{\left( {{{\mathrm{2}}^{{r_{i,1}} - {\mathrm{2}}}}{{\bar{h}}_{i,1}}{r_{i,1}}} \right) ^{{{}{\underline{r}}_{i,1}}}}z_{i,2}^{{s_i} + 1}\nonumber \\&\qquad + \frac{1}{{{s_i} + 1}}\hbar _{i,1}^{ - {s_i}}{\big ( {{r_{i,1}}{{\bar{h}}_{i,1}}\xi _{i,1}^{{r_{i,1}} - 1}} \big )^{{s_i} + 1}}z_{i,2}^{{s_i} + 1}\nonumber \\&\quad \le z_{i,1}^{\left( {{s_i} + 1} \right) \beta } + {\left( {{d_i} + {\mu _i}} \right) ^{ - 1}}z_{i,2}^{{s_i} + 1}{\varUpsilon _{i,1}}. \end{aligned}$$
(27)

Combining (27) with (23) results in

(28)

Noting the fact that

$$\begin{aligned} \begin{aligned} {\upsilon _{i,1}}{{\tilde{\varXi }} _{i,1}}{{{\hat{\varXi }}} _{i,1}}\le \frac{1}{2}{\upsilon _{i,1}}{\varXi _{i,1}^2} - \frac{1}{2}{\upsilon _{i,1}}{{\tilde{\varXi }} _{i,1}^2}, \end{aligned} \end{aligned}$$
(29)

then, it follows that

(30)

Step \(i,m~\left( {i \in \left\{ {1, \ldots ,M} \right\} ,m \in \left\{ {2, \ldots ,{n_i} - 1} \right\} } \right) \): Consider the following Lyapunov function as

$$\begin{aligned} \begin{aligned} {V_{i,m}} = {V_{i,m - 1}} + \frac{{z_{i,m}^{{s_i} - {r_{i,m}} + 2}}}{{{s_i} - {r_{i,m}} + 2}} + \frac{1}{{2{k_{i,m}}}}{\tilde{\varXi }} _{i,m}^2. \end{aligned} \end{aligned}$$
(31)

The derivative of \({V_{i,m}}\) along (1), (30) and (31) can be written as

(32)

with \({{\mathcal {F}}_{i,m}}({Z_{i,m}})\) being a function defined by

$$\begin{aligned}&{{\mathcal {F}}_{i,m}}({Z_{i,m}}) =\nonumber \\&\quad - \sum \limits _{n = 1}^{m - 1} {\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {x_{i,n}}}}\left( {h_{i,n}({{\bar{x}}_{i,n}})x_{i,n + 1}^{{r_{i,n}}} + {\varphi _{i,n}}({x_i})} \right) }\nonumber \\&\quad - \sum \limits _{j \in {{\mathcal {N}}_i}} {\frac{{\partial {\nu _{i,{m - 1}}}}}{{\partial {x_{j,1}}}}\left( {h_{j,1}({ x_{j,1}})x_{j,2}^{{r_{j,1}}} + {\varphi _{j,1}}({x_j})} \right) } \nonumber \\&\quad - \sum \limits _{n = 1}^{m - 1} {\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {{{{\hat{\varXi }}} }_{i,n}}}}{{\dot{{\hat{\varXi }}} }_{i,n}}}-\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {x_0}}}\varphi \left( {{x_0},t} \right) \nonumber \\&\quad - z_{i,m}^{\left( {{s_i} - {r_{i,m}} + 1} \right) \left( {\beta - 1} \right) }h_{i,m}({{\bar{x}}_{i,m}})\nu _{i,m}^{{r_{i,m}}}\nonumber \\&\quad +h_{i,m}({{\bar{x}}_{i,m}})\nu _{i,m}^{{r_{i,m}}}+{\varphi _{i,m}}({x_i}), \end{aligned}$$
(33)

where \({Z_{i,m}}=\Big [ x_i^T, x_{j,{j \in {{\mathcal {N}}_i}}}^T, \frac{{\partial {\nu _{i,m - 1}}}}{{\partial {x_{j,1}}}},\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {x_{i,1}}}}, \ldots ,\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {x_{i,m - 1}}}},\) \(\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {{{{\hat{\varXi }}} }_{i,1}}}},\ldots ,\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {{{{\hat{\varXi }}} }_{i,m - 1}}}},{{{{\hat{\varXi }}} }_{i,1}}, \ldots ,{{{{\hat{\varXi }}} }_{i,m - 1}},\frac{{\partial {\nu _{i,m - 1}}}}{{\partial {x_0}}},{\mu _i}{x_0} \Big ]^T\).

Following similar lines as (21), we can obtain

$$\begin{aligned} z_{i,m}^{{s_i} - {r_{i,m}} + 1}{{\mathcal {F}}_{i,m}}({Z_{i,m}})&\le z_{i,m}^{{s_i} + 1}\phi _{i,m}^{{{{\bar{r}}}_{i,m}}}{\varXi _{i,m}}{\left( {\psi _{i,m}^T{\psi _{i,m}}} \right) ^{\frac{{{{{\bar{r}}}_{i,m}}}}{2}}}\nonumber \\&\quad +z_{i,m}^{{s_i} + 1}\lambda _{i,m}^{{{{\bar{r}}}_{i,m}}}{\mathrm{+ }}{b_{i,m}}, \end{aligned}$$
(34)

where \({\varXi _{i,m}}{\mathrm{= }}{\left\| {\varTheta _{i,m}^*} \right\| ^{{{{\bar{r}}}_{i,m}}}}\) and \({b_{i,m}} = \phi _{i,m}^{ - {{}{\underline{r}}_{i,m}}} + \lambda _{i,m}^{ - {{}{\underline{r}}_{i,m}}}\varpi _{i,m}^{{{}{\underline{r}}_{i,m}}}\). Substituting (34) to (32) results in

(35)

Similar to Step i, 1, in light of (9), (12) and (35), \({{\dot{V}}_{i,m}}\) can be represented by

(36)

Again, using Lemmas 2 and 3, one has

$$\begin{aligned}&\left| {z_{i,m}^{{s_i} - {r_{i,m}} + 1}h_{i,m}({{\bar{x}}_{i,m}})\left( {x_{i,m + 1}^{{r_{i,m}}} - \nu _{i,m}^{{r_{i,m}}}} \right) } \right| \nonumber \\&\quad \le {r_{i,m}}{\bar{h}}_{i,m}\left| {z_{i,m}^{{s_i} - {r_{i,m}} + 1}} \right| \left| {{z_{i,m + 1}}} \right| \big ( {x_{i,m + 1}^{{r_{i,m}} - 1} + \nu _{i,m}^{{r_{i,m}} - 1}} \big )\nonumber \\&\quad \le z_{i,m}^{\left( {{s_i} + 1} \right) \beta } + z_{i,m + 1}^{{s_i} + 1}{\varUpsilon _{i,m}}. \end{aligned}$$
(37)

Recalling (37) and using Young’s inequality to \({\upsilon _{i,m}}{{\tilde{\varXi }} _{i,m}}{{{\hat{\varXi }}} _{i,m}}\), the time derivative of \({V_{i,{n_i}}}\) can be given by

(38)

Step \(i,{n_i}~\left( {i \in \left\{ {1, \ldots ,M} \right\} } \right) \): Consider the following Lyapunov function as

$$\begin{aligned} \begin{aligned} {V_{i,{n_i}}} = {V_{i,{n_i} - 1}} + \frac{{z_{i,{n_i}}^{{s_i} - {r_{i,{n_i}}} + 2}}}{{{s_i} - {r_{i,{n_i}}} + 2}} + \frac{1}{{2{k_{i,{n_i}}}}}{\tilde{\varXi }} _{i,{n_i}}^2. \end{aligned} \end{aligned}$$
(39)

In view of (1), (38) and (39) and applying Lemma 5, the time derivative of \({V_{i,{n_i}}}\) satisfies

(40)

with \({{\mathcal {F}}_{i,{n_i}}}\left( {{Z_{i,{n_i}}}} \right) \) being a function defined by

$$\begin{aligned}&{{\mathcal {F}}_{i,{n_i}}}({Z_{i,{n_i}}}) =\nonumber \\&\quad - h_{i,{n_i}}({x_i})\ell _{1,i}\kappa _i^{{r_{i,{n_i}}}}{{{{{u_i}}}^{{r_{i,{n_i}}}}}}\Big ( {z_{i,{n_i}}^{( {{s_i} - {r_{i,{n_i}}} + 1} )\left( {\beta - 1}\right) }-1}\Big )\nonumber \\&\quad - \sum \limits _{n = 1}^{{n_i} - 1} {\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {x_{i,n}}}}\left( h_{i,{n}}({x_i}){x_{i,n + 1}^{{r_{i,n}}} + {\varphi _{i,n}}({x_i})} \right) }\nonumber \\&\quad - \sum \limits _{j \in {{\mathcal {N}}_i}} {\frac{{\partial {\nu _{i,{{n_i} - 1}}}}}{{\partial {x_{j,1}}}}\left( h_{j,{1}}({x_{j,1}}){x_{j,2}^{{r_{j,1}}} + {\varphi _{j,1}}({x_j})} \right) }\nonumber \\&\quad - \sum \limits _{n = 1}^{{n_i} - 1} {\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {{{{\hat{\varXi }}} }_{i,n}}}}{{\dot{{\hat{\varXi }}} }_{i,n}}}-\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {x_0}}}\varphi \left( {{x_0},t} \right) \nonumber \\&\quad +h_{i,{n_i}}({x_i})\ell _{2,i}{{{{{\varDelta _i}}}^{{r_{i,{n_i}}}}}}+{\varphi _{i,{n_i}}}({x_i}), \end{aligned}$$
(41)

where \({Z_{i,{n_i}}}=\Big [ x_i^T,x_{j,{j \in {{\mathcal {N}}_i}}}^T,\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {x_{j,1}}}},\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {x_{i,1}}}}, \ldots ,\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {x_{i,{n_i} - 1}}}},\) \(\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {{{{\hat{\varXi }}} }_{i,1}}}},\ldots ,\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {{{{\hat{\varXi }}} }_{i,{n_i} - 1}}}},{{{{\hat{\varXi }}} }_{i,1}}, \ldots ,{{{{\hat{\varXi }}} }_{i,{n_i} - 1}},\frac{{\partial {\nu _{i,{n_i} - 1}}}}{{\partial {x_0}}},{\mu _i}{x_0} \Big ]^T\). Similar to (21) and (34), the following inequality holds that

$$\begin{aligned} z_{i,{n_i}}^{{s_i} - {r_{i,{n_i}}} + 1}{{\mathcal {F}}_{i,{n_i}}}({Z_{i,{n_i}}})\le&z_{i,{n_i}}^{{s_i} + 1}\phi _{i,{n_i}}^{{{{\bar{r}}}_{i,{n_i}}}}{\varXi _{i,{n_i}}}{\left( {\psi _{i,{n_i}}^T{\psi _{i,{n_i}}}} \right) ^\frac{{{{{\bar{r}}}_{i,{n_i}}}}}{2}}\nonumber \\&\quad +z_{i,{n_i}}^{{s_i} + 1}\lambda _{i,{n_i}}^{{{{\bar{r}}}_{i,{n_i}}}}{\mathrm{+ }}{b_{i,{n_i}}}, \end{aligned}$$
(42)

where \({\varXi _{i,{n_i}}}={\left\| {\varTheta _{i,{n_i}}^*} \right\| ^{{{{\bar{r}}}_{i,{n_i}}}}}\) and \({b_{i,{n_i}}} = \phi _{i,{n_i}}^{ - {{}{\underline{r}}_{i,{n_i}}}} + \lambda _{i,{n_i}}^{ - {{}{\underline{r}}_{i,{n_i}}}}\varpi _{i,{n_i}}^{{{}{\underline{r}}_{i,{n_i}}}}\). Using (42), (40) can be rewritten as

(43)

Substituting (10) and (12) into (43) yields

(44)

where above inequality holds owing to \({\zeta _{i,1}} = \left( {{d_i} + {\mu _i}} \right) \), \({\zeta _{i,n}} = 1,\left( {n = 2, \ldots ,{n_i}} \right) \) and the fact that

$$\begin{aligned} \vartheta _i^{\frac{{{r_{i,n}} - 1}}{{{s_i} + 1}}}z_{i,n}^{\left( {{s_i} - {r_{i,n}} + 2} \right) \beta }&\le \frac{{{r_{i,n}} - 1}}{{{s_i} + 1}}{\vartheta _i} + \frac{{{s_i} - {r_{i,n}} + 2}}{{{s_i} + 1}}z_{i,n}^{\left( {{s_i} + 1} \right) \beta }\nonumber \\&\quad \le {\vartheta _i} + z_{i,n}^{\left( {{s_i} + 1} \right) \beta },\left( {n = 1,2, \ldots ,{n_i}} \right) , \end{aligned}$$
(45)

with \({\vartheta _i} > 0\) being a constant.

Now, consider the total Lyapunov function

$$\begin{aligned} \begin{aligned} V = \sum \limits _{i = 1}^M {{V_{i,{n_i}}}} = \sum \limits _{i = 1}^M {\sum \limits _{m = 1}^{{n_i}} {\Bigg \{ {\frac{{z_{i,m}^{{s_i} - {r_{i,m}} + 2}}}{{{s_i} - {r_{i,m}} + 2}} + \frac{1}{{2{k_{i,m}}}}{\tilde{\varXi }} _{i,m}^2} \Bigg \}} }. \end{aligned}\nonumber \\ \end{aligned}$$
(46)

In view of Lemma 4, it holds that

$$\begin{aligned} {V^\beta }&= {\Bigg \{ {\sum \limits _{i = 1}^M {\sum \limits _{m = 1}^{{n_i}} {\bigg ( {\frac{{z_{i,m}^{{s_i} - {r_{i,m}} + 2}}}{{{s_i} - {r_{i,m}} + 2}} + \frac{1}{{2{k_{i,m}}}}{\tilde{\varXi }} _{i,m}^2} \bigg )} } } \Bigg \}^\beta }\nonumber \\&\quad \le \sum \limits _{i = 1}^M {\sum \limits _{m = 1}^{{n_i}} {\Bigg \{ {{{ \bigg ( {\frac{{z_{i,m}^{{s_i} - {r_{i,m}} + 2}}}{{{s_i} - {r_{i,m}} + 2}}} \bigg )}^{\beta } } + {{\bigg ( {\frac{1}{{2{k_{i,m}}}}{\tilde{\varXi }} _{i,m}^2} \bigg )}^\beta }} \Bigg \}} } \nonumber \\&\quad \le \sum \limits _{i = 1}^M {\sum \limits _{m= 1}^{{n_i}} {\Bigg \{ {\frac{1}{{{{\left( {{s_i} - {r_{i,m}} + 2} \right) }^\beta }}}z_{i,m}^{\left( {{s_i} - {r_{i,m}} + 2} \right) \beta } + {{\bigg ( {\frac{1}{{2{k_{i,m}}}}{\tilde{\varXi }} _{i,m}^2} \bigg )}^\beta }}\Bigg \}} }. \end{aligned}$$
(47)

Then, we can rewrite (44) as

(48)

where . After applying Lemma 3 to deal with the terms \({\Big [ {\frac{1}{2}{\upsilon _{i,m}}{\tilde{\varXi }} _{i,m}^2} \Big ]^\beta }\) and choosing design parameters \(\upsilon = 1\), \(\omega = \frac{1}{2}{\upsilon _{i,m}}{\tilde{\varXi }} _{i,m}^2\), \({q_1} = 1 - \beta \), \({q_2} = \beta \) and \(\varsigma = {\beta ^{{\beta \big / {\left( {1 - \beta } \right) }}}}\), respectively, the following inequality holds that

$$\begin{aligned} \begin{aligned} {\bigg [ {\frac{1}{2}{\upsilon _{i,m}}{\tilde{\varXi }} _{i,m}^2} \bigg ]^\beta } \le \left( {1 - \beta } \right) \varsigma + \frac{1}{2}{\upsilon _{i,m}}{\tilde{\varXi }} _{i,m}^2. \end{aligned} \end{aligned}$$
(49)

Substituting (49) into (48) results in

(50)

Invoking (50), one gets

$$\begin{aligned} \begin{aligned} \dot{V}\le - \alpha {V^\beta } + \varrho , \end{aligned}\end{aligned}$$
(51)

where \(\alpha =\min \left\{ {{{\left( {{s_i} - {r_{i,m}} + 2} \right) }^\beta }{\alpha _i},1 \le i \le M} \right\} \) and \({{+b_{i,m}} + \frac{1}{2}{{\left( {{s_i} - {r_{i,m}} + 2} \right) }^\beta }{\alpha _i}{\upsilon _{i,m}}\varXi _{i,m}^2} \Big \}\).

In accordance with Lemma 1, the final reaching time can be calculated by

$$\begin{aligned} {T_{{\mathrm{reach}}}} = \frac{1}{{( {1 - \beta } ){\theta _0}\alpha }}\Bigg [ {{V^{1 - \beta }}\left( {{z_i}( 0 ),{\varXi _i}( 0 )} \right) - {{\bigg ( {\frac{\varrho }{{( {1 - {\theta _0}})\alpha }}} \bigg )}^{\frac{{1 - \beta }}{\beta }}}} \Bigg ],\nonumber \\ \end{aligned}$$
(52)

where \(0 {<} {\theta _0} {\le } 1\) is a constant, \({z_i}\left( 0 \right) {=} \left[ {{z_{i,1}}\left( 0 \right) ,{z_{i,2}}\left( 0 \right) , } \right. \) \({\left. { \ldots ,{z_{i,m}}\left( 0 \right) } \right] ^T}\) and \({\varXi _i}\left( 0 \right) = \left[ {\varXi _{i,1}}\left( 0 \right) ,{\varXi _{i,2}}\left( 0 \right) , \ldots , {\varXi _{i,m}}\left( 0 \right) \right] ^T\). Thus, when \(\forall t \ge {T_{{\mathrm{reach}}}}\), the trajectories of the closed-loop networks are bounded by the following compact set

$$\begin{aligned} \begin{aligned} \varOmega = \left\{ {\left( {{z_i},{\varXi _i}} \right) \Big |V \le {{\bigg ( {\frac{\varrho }{{\left( {1 - {\theta _0}} \right) \alpha }}} \bigg )}^{\frac{1}{\beta }}}} \right\} . \end{aligned} \end{aligned}$$
(53)

Thus, from definition 1, it can be concluded that the closed-loop networks are SGPFS. The local tracking errors converge to a small neighborhood of the origin in finite time \({T_{{\mathrm{reach}}}}\). When \(\forall t \ge {T_{{\mathrm{reach}}}}\), we can further obtain

$$\begin{aligned} \left\| {{z_1}} \right\| \le \sqrt{\sum \nolimits _{i = 1}^M {{{\left[ {\left( {{s_i} - {r_{i,1}} + 2} \right) {{\left( {\frac{\varrho }{{( {1 - {\theta _0}} )\alpha }}} \right) }^{\frac{1}{\beta }}}} \right] }^{\frac{2}{{{s_i} - {r_{i,1}} + 2}}}}} }.\nonumber \\ \end{aligned}$$
(54)

Consequently, from the inequalities below (7), one gets that \(\left\| \delta \right\| \le \frac{{\left\| {{z_1}} \right\| }}{{ {\underline{\sigma }} ( {\bar{{\mathcal {L}}} + {\mathcal {B}}} )}}\). This completes the proof of Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wang, Y., Park, J.H. et al. Fuzzy adaptive finite-time consensus tracking control of high-order nonlinear multi-agent networks with dead zone. Nonlinear Dyn 106, 3363–3378 (2021). https://doi.org/10.1007/s11071-021-06956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06956-5

Keywords

Navigation