Skip to main content
Log in

Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces an efficient numerical algorithm for solving a significant class of linear and nonlinear time-fractional partial differential equation governed by Fredholm–Volterra operator in the sense of Robin conditions. A direct approach based on the normalized orthonormal function systems that fitted from the Gram–Schmidt orthogonalization process is utilized to transcribe the problem under study into appropriate Hilbert space. Some functional analysis theories such as upper error bound and convergence behavior under some assumptions which give the hypothetical premise of the proposed calculation are likewise talked about. Mathematical properties of the numerical results obtained are analyzed as well as general features of many numerical solutions have been identified. At long last, the used outcomes demonstrate that the present calculation and mimicked toughening give a decent planning procedure to such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  Google Scholar 

  2. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  5. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  6. Arshed, S.: B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Part. Differ. Equ. 33, 1565–1581 (2017)

    Article  MathSciNet  Google Scholar 

  7. Rostami, Y., Maleknejad, K.: Numerical solution of partial integro-differential equations by using projection method. Mediter. J. Math. 14, 113 (2017). https://doi.org/10.1007/s00009-017-0904-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, L., Li, X.F., Zhao, Y., Duan, X.Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62, 1127–1134 (2011)

    Article  MathSciNet  Google Scholar 

  9. Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. 2014, 5 (2014). https://doi.org/10.1155/2014/431965

    Article  MathSciNet  Google Scholar 

  10. Momani, S., Qaralleh, R.: An efficient method for solving systems of fractional integro-differential equations. Comput. Math. Appl. 52, 459–470 (2006)

    Article  MathSciNet  Google Scholar 

  11. Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstr. Appl. Anal. 2014, 7 (2014). https://doi.org/10.1155/2014/162896

    Article  MathSciNet  Google Scholar 

  12. Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 27 (2017). https://doi.org/10.1186/s13662-017-1085-6

    Article  MathSciNet  Google Scholar 

  13. Abu Arqub, O., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)

    Article  MathSciNet  Google Scholar 

  14. El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 257, 119–133 (2015)

    MathSciNet  MATH  Google Scholar 

  15. El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ray, S.S.: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math. Appl. 71, 859–868 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ortigueira, M.D., Machado, J.A.T.: Fractional signal processing and applications. Signal Process. 83, 2285–2286 (2003)

    Article  Google Scholar 

  18. Zaremba, S.: L’equation biharminique et une class remarquable defonctionsfoundamentals harmoniques. Bull. Int. Acad. Sci. Crac. 39, 147–196 (1907)

    Google Scholar 

  19. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  20. Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York (2009)

    MATH  Google Scholar 

  21. Berlinet, A., Agnan, C.T.: Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer, Boston (2004)

    Book  Google Scholar 

  22. Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel (2003)

    MATH  Google Scholar 

  23. Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing. Hutchinson Ross, London (1982)

    Google Scholar 

  24. Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 19, 808–813 (2006)

    Article  MathSciNet  Google Scholar 

  25. Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)

    Article  MathSciNet  Google Scholar 

  26. Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28, 828–856 (2018)

    Article  Google Scholar 

  27. Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73, 1243–1261 (2017)

    Article  MathSciNet  Google Scholar 

  28. Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017) (In Press)

  29. Abu Arqub, O., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-2845-7

    Article  Google Scholar 

  30. Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016)

    Article  MathSciNet  Google Scholar 

  31. Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type. Appl. Math. Comput. 240, 229–239 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20, 3283–3302 (2016)

    Article  Google Scholar 

  35. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 21, 7191–7206 (2017)

    Article  Google Scholar 

  36. Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl. 28, 1591–1610 (2017)

    Article  Google Scholar 

  37. Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam. Inf. 146, 231–254 (2016)

    Article  MathSciNet  Google Scholar 

  38. Abu Arqub, O., Maayah, B.: Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural. Comput. Appl. 29, 1465–1479 (2018)

    Article  Google Scholar 

  39. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Part. Differ. Equ. (2017). https://doi.org/10.1002/num.22209

    Article  Google Scholar 

  40. Abu Arqub, O.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Part. Differ. Equ. (2017). https://doi.org/10.1002/num.22236

    Article  Google Scholar 

  41. Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)

    Article  MathSciNet  Google Scholar 

  42. Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Part. Differ. Equ. 30, 289–300 (2014)

    Article  MathSciNet  Google Scholar 

  43. Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)

    Article  MathSciNet  Google Scholar 

  44. Geng, F.Z., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25, 818–823 (2012)

    Article  MathSciNet  Google Scholar 

  45. Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the unknown referees for carefully reading the paper and their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abu Arqub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Arqub, O., Odibat, Z. & Al-Smadi, M. Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn 94, 1819–1834 (2018). https://doi.org/10.1007/s11071-018-4459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4459-8

Keywords

Navigation