Skip to main content

Soft Numerical Algorithm with Convergence Analysis for Time-Fractional Partial IDEs Constrained by Neumann Conditions

  • Conference paper
  • First Online:
Fractional Calculus (ICFDA 2018)

Abstract

Some scientific pieces of research are governed by classes of partial integro-differential equations (PIDEs) of fractional order that are leading to novel challenges in simulation and optimization. In this chapter, a soft numerical algorithm is proposed and analyzed to fitted analytical solutions of PIDEs with appropriate initial and Neumann conditions in Sobolev space. Meanwhile, the solutions are represented in series form with strictly computable components. By truncating n-term approximation of the analytical solution, the solution methodology is discussed for both linear and nonlinear problems based on the nonhomogeneous term. Analysis of convergence and smoothness are given under certain assumptions to show the theoretical structures of the method. Dynamic features of the approximate solutions are studied through an illustrated example. The yield of numerical results indicates the accuracy, clarity, and effectiveness of the proposed algorithm as well as provide a proper methodology in handling such fractional issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, UK (2010)

    Book  MATH  Google Scholar 

  2. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press (2005)

    Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA, USA (1999)

    MATH  Google Scholar 

  4. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  5. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, Netherlands (2006)

    MATH  Google Scholar 

  6. Arshed, S.: B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Part. Differe. Equ. (2017). In Press. https://doi.org/10.1002/num.22153.

    Article  MathSciNet  MATH  Google Scholar 

  7. Rostami, Y., Maleknejad, K.: Numerical solution of partial integro-differential equations by using projection method. Mediterranean J. Math. 14, 113 (2017). https://doi.org/10.1007/s00009-017-0904-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, L., Li, X.F., Zhao, Y., Duan, X.Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62, 1127–1134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. 2014, Article ID 431965, 5 p. (2014). https://doi.org/10.1155/2014/431965

    Article  MathSciNet  Google Scholar 

  10. Momani, S., Qaralleh, R.: An efficient method for solving systems of fractional integro-differential equations. Comput. Math. Appl. 52, 459–470 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstract Appl. Anal. 2014, Article ID 162896, 7 p. (2014). https://doi.org/10.1155/2014/162896

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 27 (2017). https://doi.org/10.1186/s13662-017-1085-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Abu Arqub, O., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 257, 119–133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ray, S.S.: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math. Appl. 71, 859–868 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ortigueira, M.D., Machado, J.A.T.: Fractional signal processing and applications. Signal Process 83, 2285–2286 (2003)

    Article  Google Scholar 

  18. Zaremba, S.: L’equation biharminique et une class remarquable defonctionsfoundamentals harmoniques. Bulletin International de l’Academie des Sciences de Cracovie 39, 147–196 (1907)

    Google Scholar 

  19. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York, NY, USA (2009)

    MATH  Google Scholar 

  21. Al-Smadi, M.: Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng. J. 9(4), 2517–2525 (2018)

    Article  Google Scholar 

  22. Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel, Switzerland (2003)

    MATH  Google Scholar 

  23. Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing, Hutchinson Ross (1982)

    Google Scholar 

  24. Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 19, 808–813 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73, 1243–1261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017). In Press

    Google Scholar 

  28. Abu Arqub, O., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl., 1–12 (2017). https://doi.org/10.1007/s00521-017-2845-7

    Article  Google Scholar 

  29. Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sc. 39, 4549–4562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Appl. Math. Comput. 240, 229–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20, 3283–3302 (2016)

    Article  MATH  Google Scholar 

  34. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T. : Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput., 1–16 (2016). https://doi.org/10.1007/s00500-016-2262-3

    Article  MATH  Google Scholar 

  35. Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl., 1–20 (2015). https://doi.org/10.1007/s00521-015-2110-x

    Article  Google Scholar 

  36. Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundamenta Informaticae 146, 231–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Abu Arqub, O., Integral-initial, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 94(3), 1819–1834 (2018)

    Article  MATH  Google Scholar 

  38. Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow (2017). https://doi.org/10.1108/HFF-07-2016-0278

    Article  Google Scholar 

  39. Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Part. Differ. Equ. 30, 289–300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Al-Smadi, M., Abu Arqub, O., Shawagfeh, N., Momani, S.: Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl. Math. Comput. 291, 137–148 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)

    Article  MathSciNet  Google Scholar 

  45. Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Abu Arqub, O., Al-Smadi, M.: Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 117, 161–167 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abu Arqub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arqub, O.A., Al-Smadi, M., Momani, S. (2019). Soft Numerical Algorithm with Convergence Analysis for Time-Fractional Partial IDEs Constrained by Neumann Conditions. In: Agarwal, P., Baleanu, D., Chen, Y., Momani, S., Machado, J. (eds) Fractional Calculus. ICFDA 2018. Springer Proceedings in Mathematics & Statistics, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-15-0430-3_7

Download citation

Publish with us

Policies and ethics