Skip to main content
Log in

Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we analyze a population model comprising organisms that alternate between nomadic and colonial behaviours by considering stochastic noise. Incorporating stochastic noise into the population dynamics will allow a wide range of environmental fluctuations to be modelled. The theoretical framework is also generalized to include resource depletion by both nomadic and colonial sub-populations, and an ecologically realistic population size-dependent switching scheme is now proposed. We demonstrate the robustness of the present model to stochastic noise, and the use of novel generalized pure time-based switching schemes to achieve consecutive subsidence-recovery cycles and long-term proliferation. Our results are of relevance to many physical and biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Williams, P.D., Hastings, A.: Paradoxical persistence through mixed-system dynamics: towards a unified perspective of reversal behaviours in evolutionary ecology. Proc. R. Soc. London B: Biol. Sci. 278, 1281–1290 (2011)

    Article  Google Scholar 

  2. Kussell, E., Leibler, S.: Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005)

    Article  Google Scholar 

  3. Acar, M., van Oudenaarden, J.T.M.A.: Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471 (2008)

    Article  Google Scholar 

  4. Wolf, D.M., Vazirani, V.V., Arkin, A.P.: Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005)

    Article  MathSciNet  Google Scholar 

  5. Benaïm, M., Schreiber, S.J.: Persistence of structured populations in random environments. Theor. Popul. Biol. 76, 19–34 (2009)

    Article  MATH  Google Scholar 

  6. Jansen, V.A.A., Yoshimura, J.: Populations can persist in an environment consisting of sink habitats only. Proc. Natl. Acad. Sci. USA 95, 3696–3698 (1998)

    Article  Google Scholar 

  7. Harmer, G.P., Abbott, D.: Losing strategies can win by parrondo’s paradox. Nature 402, 864 (1999)

    Article  Google Scholar 

  8. Toral, R.: Cooperative parrondo’s games. Fluct. Noise Lett. 01, L7–L12 (2001)

    Article  MathSciNet  Google Scholar 

  9. Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226–5229 (2000)

    Article  Google Scholar 

  10. Harmer, G.P., Abbott, D.: A review of parrondo’s paradox. Fluct. Noise Lett. 02, R71–R107 (2002)

    Article  Google Scholar 

  11. Abbott, D.: Asymmetry and disorder: a decade of parrondo’s paradox. Fluct. Noise Lett. 09, 129–156 (2010)

    Article  Google Scholar 

  12. Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040 (1987)

    Article  MathSciNet  Google Scholar 

  13. Pinsky, R., Scheutzow, M.: Some remarks and examples concerning the transient and recurrence of random diffusions. Ann. Inst. Henri Poincaré, B28, 519 (1992)

  14. Chau, N.P.: Controlling chaos by periodic proportional pulses. Phys. Lett. A 234, 193–197 (1997)

    Article  Google Scholar 

  15. Allison, A., Abbott, D.: Control systems with stochastic feedback. Chaos 11, 715–724 (2001)

    Article  MATH  Google Scholar 

  16. Danca, M.-F., Fečkan, M., Romera, M.: Generalized form of parrondo’s paradoxical game with applications to chaos control. Int. J. Bifurc. Chaos 24, 1450008 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harmer, G.P., Abbott, D., Taylor, P.G., Pearce, C.E.M., Parrondo, J.M.R.: Information entropy and parrondo’s discrete-time ratchet. AIP Conf. Proc. 502, 544–549 (2000)

    Article  MATH  Google Scholar 

  18. Pearce, C.E.M.: Entropy, markov information sources and parrondo games. AIP Conf. Proc. 511, 207–212 (2000)

    Article  Google Scholar 

  19. Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)

    Article  Google Scholar 

  20. Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107, 225–239 (2002)

    Article  MATH  Google Scholar 

  21. Flitney, A.P., Abbott, D.: Quantum models of parrondo’s games. Physica A 324, 152–156 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, C.F., Johnson, N.F.: Exploiting randomness in quantum information processing. Phys. Lett. A 301, 343–349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Luo, G.: A special type of codimension two bifurcation and unusual dynamics in a phase-modulated system with switched strategy. Nonlinear Dyn. 67, 2727–2734 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhang, Y.: Switching-induced wada basin boundaries in the hénon map. Nonlinear Dyn. 73, 2221–2229 (2013)

    Article  MATH  Google Scholar 

  25. Danca, M.-F.: Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of parrondo’s paradox. Commun. Nonlinear Sci. Numer. Simul. 18, 500–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Libby, E., Conlin, P.L., Kerr, B., Ratcliff, W.C.: Stabilizing multicellularity through ratcheting. Phil. Trans. R. Soc. London B: Biol. Sci. 371, 20150444 (2016)

    Article  Google Scholar 

  27. Reed, F.A.: Two-locus epistasis with sexually antagonistic selection: a genetic parrondo’s paradox. Genetics 176, 1923–1929 (2007)

    Article  Google Scholar 

  28. Danca, M.-F., Lai, D.: Parrodo’s game model to find numerically stable attractors of a tumour growth model. Int. J. Bifurc. Chaos 22, 1250258 (2012)

    Article  MATH  Google Scholar 

  29. Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 34889 (2016)

    Article  Google Scholar 

  30. Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of parrondo’s paradox. Proc. Natl. Acad. Sci. USA 115, E5258–E5259 (2018)

    Article  Google Scholar 

  31. Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on parrondo’s paradox. Sci. Rep. 6, 37028 (2016)

    Article  Google Scholar 

  32. Soo, W.W.M., Cheong, K.H.: Parrondo’s paradox and complementary parrondo processes. Physica A 392, 17–26 (2013)

    Article  MathSciNet  Google Scholar 

  33. Soo, W.W.M., Cheong, K.H.: Occurrence of complementary processes in parrondo’s paradox. Physica A 412, 180–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cheong, K.H., Soo, W.W.M.: Construction of novel stochastic matrices for analysis of parrondo’s paradox. Physica A 392, 4727–4738 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. eLife 6, e21673 (2017)

  36. Cheong, K.H., Tan, Z.X., Ling, Y.H.: A time-based switching scheme for nomadic-colonial alternation under noisy conditions. Commun. Nonlinear Sci. Numer. Simul. 60, 107–114 (2018)

    Article  MathSciNet  Google Scholar 

  37. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the allee effect. Trends Ecol. Evol. 14, 405–410 (1999)

    Article  Google Scholar 

  38. Sun, G.-Q.: Mathematical modelling of population dynamics with allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    Article  Google Scholar 

  39. Sun, G.Q., Jin, Z., Li, L., Liu, Q.X.: The role of noise in a predator-prey model with allee effect. J. Biol. Phys. 35, 185–196 (2009)

    Article  Google Scholar 

  40. Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–428 (2007)

    Article  Google Scholar 

  41. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MATH  Google Scholar 

  42. Primo, C., Szendro, I.G., Rodríguez, M.A., Gutiérrez, J.M.: Error growth patterns in systems with spatial chaos: from coupled map lattices to global weather models. Phys. Rev. Lett. 98, 108501 (2007)

    Article  Google Scholar 

  43. Boffetta, G., Musacchio, S.: Chaos and predictability of homogeneous-isotropic turbulence. Phys. Rev. Lett. 119, 054102 (2017)

    Article  Google Scholar 

  44. Scheffer, M., Rinaldi, S., Kuznetsov, Y., van Nes, E.: Seasonal dynamics of daphnia and algae explained as a periodically forced predator-prey system. Oikos 80, 519–532 (1997)

    Article  Google Scholar 

  45. Scheffer, M., Rinaldi, S.: Minimal models of top-down control of phytoplankton. Freshw. Biol. 45, 265–283 (2000)

    Article  Google Scholar 

  46. Zhang, Y., Wang, X., Liu, L., Liu, J.: Fractional order spatiotemporal chaos with delay in spatial nonlinear coupling. Int. J. Bifurc. Chaos 28, 1850020 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, Y.-Q., Wang, X.-Y.: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Inf. Sci. 273, 329–351 (2014)

    Article  Google Scholar 

  48. Zhang, Y.-Q., Wang, X.-Y., Liu, L.-Y., He, Y., Liu, J.: Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices. Commun. Nonlinear Sci. Numer. Simul. 52, 52–61 (2017)

    Article  MathSciNet  Google Scholar 

  49. Lucas, C.H., Graham, W.M., Widmer, C.: Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Adv. Mar. Biol. 63, 133–196 (2012)

    Article  Google Scholar 

  50. Baldauf, S.L., Doolittle, W.F.: Origin and evolution of the slime molds (mycetozoa). Proc. Natl. Acad. Sci. USA 94, 12007–12012 (1997)

    Article  Google Scholar 

  51. Bastidas, R.J., Heitman, J.: Trimorphic stepping stones pave the way to fungal virulence. Proc. Natl. Acad. Sci. USA 106, 351–352 (2009)

    Article  Google Scholar 

  52. Cooper, N., Jetz, W., Freckleton, R.P.: Phylogenetic comparative approaches for studying niche conservatism. J. Evol. Biol. 23, 2529–2539 (2010)

    Article  Google Scholar 

  53. Kirchner, J.W.: Evolutionary speed limits inferred from the fossil record. Nature 415, 65 (2002)

    Article  Google Scholar 

  54. Steele, J.H.: A comparison of terrestrial and marine ecological systems. Nature 313, 355 (1985)

    Article  Google Scholar 

  55. Schaffer, W.M.: Order and chaos in ecological systems. Ecology 66, 93–106 (1985)

    Article  Google Scholar 

  56. Halley, J.M.: Ecology, evolution and 1f-noise. Trends Ecol. Evol. 11, 33–37 (1996)

    Article  Google Scholar 

  57. Vasseur, D.A., Yodzis, P.: The color of environmental noise. Ecology 85, 1146–1152 (2004)

    Article  Google Scholar 

  58. Gilden, D., Thornton, T., Mallon, M.: 1/f noise in human cognition. Science 267, 1837–1839 (1995)

    Article  Google Scholar 

  59. Arecchi, F.T., Lisi, F.: Hopping mechanism generating \(\frac{1}{f}\) noise in nonlinear systems. Phys. Rev. Lett. 49, 94–98 (1982)

    Article  Google Scholar 

  60. Ren, Z., Deng, Z., Shuai, D., Sun, Z.: Analysis of power spectrum and 1/f type power law in a complex computer network model. Comput. Phys. Commun. 136, 225–235 (2001)

    Article  MATH  Google Scholar 

  61. Paladino, E., Galperin, Y.M., Falci, G., Altshuler, B.L.: \({1}/{f}\) noise: implications for solid-state quantum information. Rev. Mod. Phys. 86, 361–418 (2014)

    Article  Google Scholar 

  62. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  Google Scholar 

  63. Hohensee, M., et al.: Sources and technology for an atomic gravitational wave interferometric sensor. Gen. Relativ. Gravit. 43, 1905–1930 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ellis, P.E., Free, J.B.: Social organization of animal communities. Nature 201, 861 (1964)

    Article  Google Scholar 

  65. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., Camazine, S.: Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997)

    Article  Google Scholar 

  66. Calhoun, J.B.: A method for self-control of population growth among mammals living in the wild. Science 109, 333–335 (1949)

    Article  Google Scholar 

  67. Taylor, L.R., Taylor, R.A.J.: Aggregation, migration and population mechanics. Nature 265, 415 (1977)

    Article  Google Scholar 

  68. Lipsitch, M., Levin, B.R.: The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41, 363–73 (1997)

    Google Scholar 

  69. Martínez, J.L.: Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008)

    Article  Google Scholar 

  70. Levin, B.R., Udekwu, K.I.: Population dynamics of antibiotic treatment: a mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrob. Agents Chemother. 54, 3414–3426 (2010)

    Article  Google Scholar 

  71. Cross, T., Walker, P.D., Gould, G.W.: Thermophilic actinomycetes producing resistant endospores. Nature 220, 352 (1968)

    Article  Google Scholar 

  72. Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., Setlow, P.: Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000)

    Article  Google Scholar 

  73. Sih, A., Bell, A., Johnson, J.: Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004)

    Article  Google Scholar 

  74. Wolf, M., Weissing, F.J.: Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012)

    Article  Google Scholar 

  75. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998)

    Article  MATH  Google Scholar 

  76. Şahin, E., Winfield, A.: Special issue on swarm robotics. Swarm Intell. 2, 69–72 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Hao Cheong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, J.M., Xie, Ng. & Cheong, K.H. Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn 94, 1467–1477 (2018). https://doi.org/10.1007/s11071-018-4436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4436-2

Keywords

Navigation