Skip to main content
Log in

Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the parameter and state estimation problems for a class of fractional-order nonlinear systems subject to the perturbation on the observer gain. The fractional-order nonlinear systems are linear in the unknown parameters and nonlinear in the states. Based on the equivalent integer-order differential equations, a fractional-order non-fragile observer and two kinds of fractional-order adaptive law are derived by applying the direct Lyapunov approach. The results are systematically obtained in terms of linear matrix inequalities and solved by YALMIP Matlab Toolbox. Two numerical examples with comparative result of two proposed adaptive laws are provided to illustrate the efficiency and validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)

    Google Scholar 

  2. Li, L., Zhang, Q.C.: Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system. Nonlinear Dyn. 87(1), 587–604 (2017)

    Article  Google Scholar 

  3. Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Sig. Process. 107, 355–360 (2015)

    Article  Google Scholar 

  4. Chen, K., Tang, R., Li, C.: Phase-constrained fractional order PI\(^\lambda \) controller for second-order-plus dead time systems. Trans. Inst. Meas. Control 39(8), 1225–1235 (2017)

    Article  Google Scholar 

  5. Das, S., Saha, S., Das, S., Gupta, A.: On the selection of tuning methodology of FOPID controllers for the control of higher order processes. ISA Trans. 50(3), 376–388 (2011)

    Article  Google Scholar 

  6. Luo, Y., Chen, Y.: Stabilizing and robust fractional order pi controller synthesis for first order plus time delay systems. Automatica 48(9), 2159–2167 (2012)

    Article  MathSciNet  Google Scholar 

  7. Yeroğlu, C., Ateş, A.: A stochastic multi-parameters divergence method for online auto-tuning of fractional order pid controllers. J. Frankl. Inst. 351(5), 2411–2429 (2014)

    Article  MathSciNet  Google Scholar 

  8. Lu, J., Chen, Y.: Robust stability and stabilization of fractional-order interval systems with the fractional order: the case \(0<\alpha <1\). IEEE Trans. Autom. Control 55(1), 152–158 (2010)

    Article  MathSciNet  Google Scholar 

  9. Lu, J., Chen, G.: Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans. Autom. Control 54(6), 1294–1299 (2009)

    Article  MathSciNet  Google Scholar 

  10. Li, C., Wang, J.: Robust stability and stabilization of fractional order interval systems with coupling relationships: the \(0<\alpha <1\) case. J. Frankl. Inst. 349(7), 2406–2419 (2012)

    Article  MathSciNet  Google Scholar 

  11. Lu, J., Ma, Y., Chen, W.: Maximal perturbation bounds for robust stabilizability of fractional-order systems with norm bounded perturbations. J. Frankl. Inst. 350(10), 3365–3383 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lin, J.: Robust resilient controllers synthesis for uncertain fractional-order large-scale interconnected system. J. Frankl. Inst. 351(3), 1630–1643 (2014)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  14. Yu, J., Hu, H., Zhou, S., Lin, X.: Generalized Mittag–Leffler stability of multi-variables fractional order nonlinear systems. Automatica 49(6), 1798–1803 (2013)

    Article  MathSciNet  Google Scholar 

  15. Boroujeni, E.A., Momeni, H.R.: Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Sig. Process. 92(10), 2365–2370 (2012)

    Article  Google Scholar 

  16. Li, C., Wang, J., Lu, J., Ge, Y.: Observer-based stabilisation of a class of fractional order non-linear systems for \(0<\alpha <2\) case. IET Control Theory Appl. 8(13), 1238–1246 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). ISA Trans. 56, 102–110 (2015)

    Article  Google Scholar 

  18. Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80(1–2), 249–267 (2015)

    Article  MathSciNet  Google Scholar 

  19. Chen, Y., Wei, Y., Zhong, H., Wang, Y.: Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems. Nonlinear Dyn. 85(1), 633–643 (2016)

    Article  MathSciNet  Google Scholar 

  20. Chen, Y., Wei, Y., Zhou, X., Wang, Y.: Stability for nonlinear fractional order systems: an indirect approach. Nonlinear Dyn. 89(2), 1011–1018 (2017)

    Article  Google Scholar 

  21. Keel, L., Bhattacharyya, S.P.: Robust, fragile, or optimal? IEEE Trans. Autom. Control 42(8), 1098–1105 (1997)

    Article  MathSciNet  Google Scholar 

  22. Sabatier, J., Farges, C., Merveillaut, M., Feneteau, L.: On observability and pseudo state estimation of fractional order systems. Eur. J. Control 18(3), 260–271 (2012)

    Article  MathSciNet  Google Scholar 

  23. NDoye, I., Darouach, M., Voos, H., Zasadzinski, M.: Design of unknown input fractional-order observers for fractional-order systems. Int. J. Appl. Math. Comput. Sci. 23(3), 491–500 (2013)

    Article  MathSciNet  Google Scholar 

  24. Rapaic, M.R., Pisano, A.: Variable-order fractional operators for adaptive order and parameter estimation. IEEE Trans. Autom. Control 59(3), 798–803 (2014)

    Article  MathSciNet  Google Scholar 

  25. Lan, Y.H., Zhou, Y.: Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Syst. Control Lett. 62(12), 1143–1150 (2013)

    Article  MathSciNet  Google Scholar 

  26. Lan, Y.H., Wang, L.L., Ding, L., Zhou, Y.: Full-order and reduced-order observer design for a class of fractional-order nonlinear systems. Asian J. Control 18(4), 1467–1477 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kong, S., Saif, M., Liu, B.: Observer design for a class of nonlinear fractional-order systems with unknown input. J. Frankl. Inst. 354(13), 5503–5518 (2017)

    Article  MathSciNet  Google Scholar 

  28. Chen, K., Lu, J., Li, C.: The ellipsoidal invariant set of fractional order systems subject to actuator saturation: the convex combination form. IEEE/CAA J. Autom. Sin. 3(3), 311–319 (2016)

    Article  MathSciNet  Google Scholar 

  29. Liu, S., Wu, X., Zhou, X.F., Jiang, W.: Asymptotical stability of Riemann–Liouville fractional nonlinear systems. Nonlinear Dyn. 86(1), 65–71 (2016)

    Article  MathSciNet  Google Scholar 

  30. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic press, Cambridge (1998)

    MATH  Google Scholar 

  31. Sabatier, J., Farges, C., Trigeassou, J.C.: Fractional systems state space description: some wrong ideas and proposed solutions. J. Vib. Control 20(7), 1076–1084 (2014)

    Article  MathSciNet  Google Scholar 

  32. Machado, J.A.T., Baleanu, D., Chen, W., Sabatier, J.: New trends in fractional dynamics. J. Vib. Control 20(7), 963 (2014)

    Article  MathSciNet  Google Scholar 

  33. Demirci, E., Ozalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236(11), 2754–2762 (2012)

    Article  MathSciNet  Google Scholar 

  34. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  35. Cho, Y.M., Rajamani, R.: A systematic approach to adaptive observer synthesis for nonlinear systems. IEEE Trans. Autom. Control 42(4), 534–537 (1997)

    Article  MathSciNet  Google Scholar 

  36. Lofberg, J.: Yalmip: a toolbox for modeling and optimization in matlab. In: IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289. Taipei (2004)

Download references

Acknowledgements

The authors would like to thanks all the anonymous reviewers for their valuable suggestions and insightful comments on this manuscript. This work was supported by Science Startup Foundation of Hainan University (No. KYQD(ZR)1872), Natural Science Foundation of Hainan Province (No. 20156218), Natural science Foundation of China (No. 31460318) and the Innovative Project of Post-graduate of Hainan Province (No. Hys2016-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Tang, R., Li, C. et al. Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters. Nonlinear Dyn 94, 415–427 (2018). https://doi.org/10.1007/s11071-018-4368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4368-x

Keywords

Navigation