Skip to main content
Log in

Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Viscoelastic phenomena widely exist in MEMS materials, which may have certain effects on transition mechanism of nonlinear jumping phenomena and transient chaotic behaviors. This article aims to theoretically investigate the static and dynamic characteristics of electrically actuated viscoelastic bistable microbeam via a low-dimensional model. An improved single-degree-of-freedom model to describe microbeam-based resonators is obtained by using Fractional Kelvin constitutive model, Hamilton’s principle and Galerkin method. Through static bifurcation analysis, three kinds of parameter conditions of the bistable system are obtained, and potential energy function of the Hamiltonian system is theoretically derived. The influence of fractional viscoelasticity on dynamic pull-in phenomena is distinguished from the viewpoint of energy. Then, the method of multiple scales is applied to determine the response and stability of the system for small vibration amplitude and AC voltage. The influence of fractional viscoelasticity on amplitude, frequency and bifurcation behavior is investigated. Results show that compared with the elastic material, nonlinear phenomenon becomes weak, resonance frequency increases and amplitude decreases in the viscoelastic system. Besides, the numerical discretization method of fractional derivative is given to verify theoretical results. To study the influence of fractional viscoelasticity on complicated vibration, Melnikov method is applied to predict the existence of chaos, and numerical simulation is carried out to find the stable regions, chaotic regions and dynamic pull-in regions by using bifurcation diagrams with local maximum method. Rational increase in material modulus ratio parameter and fractional order is effective to reduce the possibility of chaos and dynamic pull-in. This analysis has the potential of developing parameter design in MEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kouravand, S.: Design and modeling of some sensing and actuating mechanisms for MEMS applications. Appl. Math. Model. 35, 5173–5181 (2011)

    Article  MATH  Google Scholar 

  2. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst.-Trans. ASME. 132, 034001 (2010)

    Article  Google Scholar 

  3. Jung, J., Kim, P., Lee, J.-I., Seok, J.: Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets. Int. J. Mech. Sci. 92, 206–222 (2015)

    Article  Google Scholar 

  4. Mestrom, R.M.C., Fey, R.H.B., van Beek, J.T.M., Phan, K.L., Nijmeijer, H.: Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens. Actuators A Phys. 142, 306–315 (2008)

    Article  Google Scholar 

  5. Song, Z.K., Li, H.X., Sun, K.B.: Adaptive dynamic surface control for MEMS triaxial gyroscope with nonlinear inputs. Nonlinear Dyn. 78, 173–182 (2014)

    Article  MATH  Google Scholar 

  6. Park, K., Chen, Q., Lai, Y.C.: Energy enhancement and chaos control in microelectromechanical systems. Phys. Rev. E. 77, 026210 (2008)

    Article  Google Scholar 

  7. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2006)

    Article  MATH  Google Scholar 

  8. Schmid, S., Senn, P., Hierold, C.: Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sens. Actuators A Phys. 145–146, 442–448 (2008)

    Article  Google Scholar 

  9. Kato, Y., Sekitani, T., Takamiya, M.T., Doi, M., Asaka, K., Sakurai, T., Someya, T.: Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron. Dev. 54, 202–209 (2007)

    Article  Google Scholar 

  10. Bachmann, D., Schöberle, B., Kühne, S., Leiner, Y., Hierold, C.: Fabrication and characterization of folded SU-8 suspensions for MEMS applications. Sens. Actuators A Phys. 130–131, 379–386 (2006)

    Article  Google Scholar 

  11. Bethe, K., Baumgarten, D., Frank, J.: Creep of sensor’s elastic elements: metals versus non-metals. Sens. Actuators A Phys. 21, 844–849 (1990)

    Article  Google Scholar 

  12. Haghighi, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15, 3091–3099 (2010)

    Article  Google Scholar 

  13. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  14. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759–766 (2002)

    Article  Google Scholar 

  15. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12, 672–680 (2003)

    Article  Google Scholar 

  16. Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int. J. Nonlinear Mech. 42, 626–642 (2007)

    Article  Google Scholar 

  17. Lenci, S., Rega, G.: Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16, 390–401 (2006)

    Article  Google Scholar 

  18. Xie, W.C., Lee, H.P., Lim, S.P.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31, 243–256 (2003)

    Article  MATH  Google Scholar 

  19. Luo, A.C.J., Wang, F.Y.: Nonlinear dynamics of a micro-electro-mechanical system with time-varying capacitors. J. Vib. Acoust. 126, 77 (2004)

    Article  Google Scholar 

  20. Ilyas, S., Ramini, A., Arevalo, A., Younis, M.I.: An experimental and theoretical investigation of a micromirror under mixed-frequency excitation. J. Microelectromech. Syst. 24, 1124–1131 (2015)

    Article  Google Scholar 

  21. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)

    Article  Google Scholar 

  22. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  23. Alsaleem, F.M., Younis, M.I.: Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Mater. Struct. 19, 035016 (2010)

    Article  Google Scholar 

  24. Masri, K.M., Younis, M.I.: Investigation of the dynamics of a clamped-clamped microbeam near symmetric higher order modes using partial electrodes. Int. J. Dyn. Control 3, 173–182 (2015)

    Article  MathSciNet  Google Scholar 

  25. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2006)

    Article  MATH  Google Scholar 

  26. Ouakad, H.M., Younis, M.I.: The dynamic behavior of MEMS arch resonators actuated electrically. Int. J. Nonlinear Mech. 45, 704–713 (2010)

    Article  Google Scholar 

  27. Tuck, K., Jungen, A., Geisberger, A., Ellis, M., Skidmore, G.: A study of creep in polysilicon MEMS devices. J. Eng. Mater. Technol. 127, 90–96 (2005)

    Article  Google Scholar 

  28. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)

    Article  MathSciNet  Google Scholar 

  29. Chen, C., Hu, H., Dai, L.: Nonlinear behavior and characterization of a piezoelectric laminated microbeam system. Commun. Nonlinear Sci. Numer. Simul. 18, 1304–1315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dubourg, G., Dufour, I., Pellet, C., Ayela, C.: Optimization of the performances of SU-8 organic microcantilever resonators by tuning the viscoelastic properties of the polymer. Sens. Actuators B Chem. 169, 320–326 (2012)

    Article  Google Scholar 

  31. Leung, A.Y.T., Yang, H.X., Zhu, P., Guo, Z.J.: Steady state response of fractionally damped nonlinear viscoelastic arches by residue harmonic homotopy. Comput. Struct. 121, 10–21 (2013)

    Article  Google Scholar 

  32. Tékam Oumbé, G.T., Kwuimy, C.A., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos 25, 013112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fu, Y.-M., Zhang, J.: Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam. Acta Mech. Sin. 25, 211–218 (2008)

    Article  MATH  Google Scholar 

  34. Zhang, J., Fu, Y.M.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47, 1649–1658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Makris, N.: Three-dimensional constitutive viscoelastic law with fractional order time derivatives. J Rheol 41, 1007–1020 (1997)

    Article  Google Scholar 

  36. Zhu, Z.Y., Li, G.G., Cheng, C.J.: A numerical method for fractional integral with applications. Appl. Math. Mech. 24, 373–384 (2003)

    Article  MATH  Google Scholar 

  37. Yao, Q.Z., Liu, L.C., Yan, Q.F.: Quasi-static analysis of beam described by fractional derivative kelvin viscoelastic model under lateral load. Adv. Mater. Res. 189–193, 3391–3394 (2011)

    Article  Google Scholar 

  38. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801–0108052 (2010)

    Article  Google Scholar 

  39. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Dynamics and global stability of beam-based electrostatic microactuators. J. Vib. Control 16, 721–748 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Han, J., Zhang, Q., Wang, W.: Static bifurcation and primary resonance analysis of a MEMS resonator actuated by two symmetrical electrodes. Nonlinear Dyn. 80, 1585–1599 (2015)

    Article  Google Scholar 

  41. Leung, A.Y.T., Yang, H.X., Chen, J.Y.: Parametric bifurcation of a viscoelastic column subject to axial harmonic force and time-delayed control. Comput. Struct. 136, 47–55 (2014)

    Article  Google Scholar 

  42. Di Paola, M., Heuer, R., Pirrotta, A.: Fractional visco-elastic Euler–Bernoulli beam. Int. J. Solids Struct. 50, 3505–3510 (2013)

  43. Rand, R.H., Sah, S.M., Suchorsky, M.K.: Fractional Mathieu equation. Commun. Nonlinear Sci. Numer. Simul. 15, 3254–3262 (2010)

  44. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)

    MATH  Google Scholar 

  45. Shao, S., Masri, K.M., Younis, M.I.: The effect of timedelayed feedback controller on an electrically actuated resonator. Nonlinear Dyn. 74, 257–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Han, J., Zhang, Q., Wang, W.: Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes. Commun. Nonlinear Sci Numer. Simul. 22, 492–510 (2015)

    Article  Google Scholar 

  47. Siewe, M.S., Hegazy, U.H.: Homoclinic bifurcation and chaos control in MEMS resonators. Appl. Math. Model. 35, 5533–5552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6, 125–42 (1994)

    Article  Google Scholar 

  49. Cao, H., Chi, X., Chen, G.: Suppressing or inducing chaos in a model of robot arms and mechanical manipulators. J. Sound Vib. 271, 705–724 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 11372210) and Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110010)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-chang Zhang.

Appendix

Appendix

$$\begin{aligned}&\chi = 1-2x_e^2 \int _0^1 {\phi ^{4}\hbox {d}x} +x_e^4 \int _0^1 {\phi ^{6}\hbox {d}x} \end{aligned}$$
(56)
$$\begin{aligned}&a_m = \frac{-4x_e \int _0^1 {\phi ^{4}\hbox {d}x} +4x_e^3 \int _0^1 {\phi ^{6}\hbox {d}x} }{\chi } \end{aligned}$$
(57)
$$\begin{aligned}&a_n =\frac{-2\int _0^1 {\phi ^{4}\hbox {d}x} +6x_e^2 \int _0^1 {\phi ^{6}\hbox {d}x} }{\chi } \end{aligned}$$
(58)
$$\begin{aligned}&\omega _n^2 =\frac{\omega ^{2}-4\alpha _2 V_\mathrm{dc}^2 -6\omega ^{2}x_e^2 \int _0^1 {\phi ^{4}\hbox {d}x} -3\alpha _1 x_e^2 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi \hbox {d}x} +5x_e^4 \omega ^{2}\int _0^1 {\phi ^{6}\hbox {d}x} }{\chi } \nonumber \\&\quad \qquad \frac{+10\alpha _1 x_e^4 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} -7\alpha _1 x_e^6 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} }{\chi } \end{aligned}$$
(59)
$$\begin{aligned}&a_q =\frac{-6\omega ^{2}x_e \int _0^1 {\phi ^{4}\hbox {d}x} -3\alpha _1 x_e \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi \hbox {d}x} +10x_e^3 \omega ^{2}\int _0^1 {\phi ^{6}\hbox {d}x} }{\chi } \nonumber \\&\qquad \quad \frac{+20\alpha _1 x_e^3 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} -21\alpha _1 x_e^5 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} }{\chi } \end{aligned}$$
(60)
$$\begin{aligned}&a_c =\frac{-2\omega ^{2}\int _0^1 {\phi ^{4}\hbox {d}x} -\alpha _1 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi \hbox {d}x} +10x_e^2 \omega ^{2}\int _0^1 {\phi ^{6}\hbox {d}x} }{\chi } \nonumber \\&\qquad \quad \frac{+20\alpha _1 x_e^2 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} -35\alpha _1 x_e^4 \Gamma (\phi ,\phi )\int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} }{\chi } \end{aligned}$$
(61)
$$\begin{aligned}&a_p =\frac{-\alpha _1 \Gamma (\phi ,\phi ){\bar{{\eta }}}(2x_e^2 \int _0^1 {{\phi }''\phi \hbox {d}x} -4x_e^4 \int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} +2x_e^6 \int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} )}{\chi } \nonumber \\&\qquad \quad \frac{+\omega ^{2}{\bar{{\eta }}}(1-2x_e^2 \int _0^1 {\phi ^{4}\hbox {d}x} +x_e^4 \int _0^1 {\phi ^{6}\hbox {d}x} )}{\chi } \end{aligned}$$
(62)
$$\begin{aligned}&a_r =\frac{-2x_e \alpha _1 \Gamma (\phi ,\phi ){\bar{{\eta }}}(\int _0^1 {{\phi }''\phi \hbox {d}x} -6x_e^2 \int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} +5x_e^4 \int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} )}{\chi } \nonumber \\&\qquad \quad \frac{-4x_e \omega ^{2}{\bar{{\eta }}}\int _0^1 {\phi ^{4}\hbox {d}x} +4x_e^3 \omega ^{2}{\bar{{\eta }}}\int _0^1 {\phi ^{6}\hbox {d}x} }{\chi } \end{aligned}$$
(63)
$$\begin{aligned}&a_e =\frac{\omega ^{2}{\bar{{\eta }}}(-2\int _0^1 {\phi ^{4}\hbox {d}x} +6x_e^2 \int _0^1 {\phi ^{6}\hbox {d}x} )-2x_e \alpha _1 \Gamma (\phi ,\phi ){\bar{{\eta }}}(-6x_e \int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} +10x_e^3 \int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} )}{\chi } \end{aligned}$$
(64)
$$\begin{aligned}&a_h =\frac{-\alpha _1 \Gamma (\phi ,\phi ){\bar{{\eta }}}(x_e \int _0^1 {{\phi }''\phi \hbox {d}x} -2x_e^3 \int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} +x_e^5 \int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} )}{\chi } \end{aligned}$$
(65)
$$\begin{aligned}&a_s =\frac{-\alpha _1 \Gamma (\phi ,\phi ){\bar{{\eta }}}(\int _0^1 {{\phi }''\phi \hbox {d}x} -6x_e^2 \int _0^1 {{\phi }''\phi ^{3}\hbox {d}x} +5x_e^4 \int _0^1 {{\phi }''\phi ^{5}\hbox {d}x} )}{\chi } \end{aligned}$$
(66)
$$\begin{aligned}&f=\frac{2\alpha _2 V_\mathrm{dc} V_\mathrm{ac} (\int _0^1 {\phi \hbox {d}x} +2x_e +x_e^2 \int _0^1 {\phi ^{3}\hbox {d}x} )}{\chi } \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, Qc. Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system. Nonlinear Dyn 87, 587–604 (2017). https://doi.org/10.1007/s11071-016-3062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3062-0

Keywords

Navigation