Skip to main content
Log in

Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a simplified memristor-based fractional-order neural network (MFNN) with discontinuous memductance function is proposed. It is essentially a switched system with irregular switching laws and consists of eight fractional-order neural network (FNN) subsystems. The nonlinear dynamics of the simplified MFNN including equilibrium points and their stability, bifurcation and chaos is investigated analytically and numerically. In particular, the effect of the switching jump on the dynamics of the simplified MFNN is explored for the first time. Taking the fractional order, the memristive connection weight or the switching jump as the bifurcation parameter, the dynamics such as chaotic motion, tangent bifurcation and intermittent chaos is identified over a wide range of some specified parameter. It can be seen that the incorporation of the memristors greatly improves and enriches the dynamics of the corresponding FNN. Different from the period-doubling route to chaos, this paper reveals that the mechanism behind the emergence of chaos for the simplified MFNN is the intermittency route to chaos. In particular, for some typical parameter, the existence of chaotic attractors is verified with the phase portraits, bifurcation diagrams, Poincaré sections and maximum Lyapunov exponents, respectively. This paper not only provides a way of designing chaotic MFNN with discontinuous memductance function but also suggests a possible method of generating more complicated chaotic attractors, such as multi-scroll or multi-wing attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)

    MATH  Google Scholar 

  2. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives and Some of Their Applications. Naukai Technika, Minsk (1987)

    MATH  Google Scholar 

  3. Abdelouahab, M.S., Lozi, R., Chua, L.: Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurcat. Chaos 24(09), 1430023 (2014)

    Article  MATH  Google Scholar 

  4. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

  5. Boroomand, A., Menhaj, M.: Fractional-order Hopfield neural networks. Lect. Notes Comput. Sci. 5506, 883–890 (2009)

    Article  Google Scholar 

  6. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  7. Huang, X., Zhao, Z., Wang, Z., Li, Y.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94, 13–21 (2012)

    Article  Google Scholar 

  8. Wang, Z., Wang, X., Li, Y., Huang, X.: Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurcat. Chaos 27(13), 1750209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    Article  MATH  Google Scholar 

  10. Tao, B., Xiao, M., Sun, Q., Cao, J.: Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model. Neurocomputing 275, 677–686 (2018)

    Article  Google Scholar 

  11. Xiao, M., Zheng, W.X., Jiang, G., Cao, J.: Undamped oscillations generated by hopf bifurcations in fractional-order recurrent neural networks with caputo derivative. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3201–3214 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  13. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  14. Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II Express Briefs 62(8), 786–790 (2015)

    Article  Google Scholar 

  16. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)

    Article  Google Scholar 

  17. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18(11), 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81(1–2), 215–226 (2015)

    Article  MathSciNet  Google Scholar 

  19. Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurcat. Chaos 20(05), 1567–1580 (2010)

    Article  Google Scholar 

  20. Kengne, J., Tabekoueng, Z.N., Tamba, V.K., Negou, A.N.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos 25(10), 103126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 88(4), 2589–2608 (2017)

    Article  Google Scholar 

  22. Li, Y., Huang, X., Song, Y., Lin, J.: A new fourth-order memristive chaotic system and its generation. Int. J. Bifurcat. Chaos 25(11), 1550151 (2015)

    Article  MathSciNet  Google Scholar 

  23. Teng, L., Iu, H.H., Wang, X., Wang, X.: Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77(1–2), 231–241 (2014)

    Article  Google Scholar 

  24. Huang, X., Jia, J., Li, Y., Wang, Z.: Complex nonlinear dynamics in fractional and integer order memristor-based systems. Neurocomputing 218, 296–306 (2016)

    Article  Google Scholar 

  25. Rajagopal, K., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491–1512 (2018)

    Article  Google Scholar 

  26. Si, G., Diao, L., Zhu, J.: Fractional-order charge-controlled memristor: theoretical analysis and simulation. Nonlinear Dyn. 87(4), 2625–2634 (2017)

    Article  Google Scholar 

  27. Hu, W., Ding, D., Zhang, Y., Wang, N., Liang, D.: Hopf bifurcation and chaos in a fractional order delayed memristor-based chaotic circuit system. Optik 130, 189–200 (2017)

    Article  Google Scholar 

  28. Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70(2), 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  29. Petras, I.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II Express Briefs 57(12), 975–979 (2010)

    Article  Google Scholar 

  30. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  31. Thomas, A.: Memristor-based neural networks. J. Phys. D Appl. Phys. 46(9), 093001 (2013)

    Article  Google Scholar 

  32. Li, L., Wang, Z., Li, Y., Lu, J., Shen, H.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. (2018). https://doi.org/10.1016/j.amc.2018.02.029

  33. Li, Q., Tang, S., Zeng, H., Zhou, T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78(2), 1087–1099 (2014)

    Article  MATH  Google Scholar 

  34. Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59(3), 358–363 (2016)

    Article  Google Scholar 

  35. Jiang, P., Zeng, Z., Chen, J.: On the periodic dynamics of memristor-based neural networks with leakage and time-varying delays. Neurocomputing 219, 163–173 (2017)

    Article  Google Scholar 

  36. Wen, S., Zeng, Z., Huang, T.: Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 97, 233–240 (2012)

    Article  Google Scholar 

  37. Hu, J., Wang, J.: Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2010)

  38. Wen, S., Huang, T., Zeng, Z., Chen, Y., Li, P.: Circuit design and exponential stabilization of memristive neural networks. Neural Netw. 63, 48–56 (2015)

    Article  MATH  Google Scholar 

  39. Abdurahman, A., Jiang, H., Teng, Z.: Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw. 69, 20–28 (2015)

    Article  Google Scholar 

  40. Li, N., Cao, J.: New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw. 61, 1–9 (2015)

    Article  MATH  Google Scholar 

  41. Zhang, G., Shen, Y., Wang, L.: Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays. Neural Netw. 46, 1–8 (2013)

    Article  MATH  Google Scholar 

  42. Cao, J., Li, R.: Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci. China Inf. Sci. 60(3), 032201 (2017)

    Article  MathSciNet  Google Scholar 

  43. Guo, Z., Wang, J., Yan, Z.: Attractivity analysis of memristor-based cellular neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 704–717 (2014)

    Article  Google Scholar 

  44. Wen, S., Zeng, Z., Huang, T., Chen, Y.: Passivity analysis of memristor-based recurrent neural networks with time-varying delays. J. Franklin Inst. 350(8), 2354–2370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen, J., Zeng, Z., Jiang, P.: Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 51, 1–8 (2014)

    Article  MATH  Google Scholar 

  46. Chen, J., Chen, B., Zeng, Z.: Global uniform asymptotic fixed deviation stability and stability for delayed fractional-order memristive neural networks with generic memductance. Neural Netw. 98, 65–75 (2018)

    Article  Google Scholar 

  47. Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn. 83(1), 419–432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bao, H., Park, J.H., Cao, J.: Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn. 82(3), 1343–1354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, L., Yang, Y., Wang, F.: Lag synchronization for fractional-order memristive neural networks via period intermittent control. Nonlinear Dyn (2017). https://doi.org/10.1007/s11071-017-3459-4

    MATH  Google Scholar 

  50. Choi, H.D., Ahn, C.K., Karimi, H.R., Lim, M.T.: Filtering of discrete-time switched neural networks ensuring exponential dissipative and \(l_{2}-l_{\infty }\) performances. IEEE Trans. Cybern. 47(10), 3195–3207 (2017)

    Article  Google Scholar 

  51. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)

    Article  MATH  Google Scholar 

  52. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963–968. Lille (1996)

  53. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    Article  MATH  Google Scholar 

  54. Wu, A., Zhang, J., Zeng, Z.: Dynamic behaviors of a class of memristor-based Hopfield networks. Phys. Lett. A 375(15), 1661–1665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu, A., Zeng, Z.: Anti-synchronization control of a class of memristive recurrent neural networks. Commun. Nonlinear Sci. Numer. Simul. 18(2), 373–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014)

    Article  MATH  Google Scholar 

  57. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kim, H., Eykholt, R., Salas, J.D.: Nonlinear dynamics, delay times, and embedding windows. Physica D 127(1), 48–60 (1999)

    Article  MATH  Google Scholar 

  60. Yalcin, M.E., Suykens, J.A., Vandewalle, J.: True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I Regul. Pap. 51(7), 1395–1404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Bersini, H., Sener, P.: The connections between the frustrated chaos and the intermittency chaos in small Hopfield networks. Neural Netw. 15(10), 1197–1204 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Huang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants 61473178, 61573008, 61473177.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Huang, X., Wang, Z. et al. Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function. Nonlinear Dyn 93, 611–627 (2018). https://doi.org/10.1007/s11071-018-4213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4213-2

Keywords

Navigation