Skip to main content
Log in

Attitude stabilization of a rigid body under the action of a vanishing control torque

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of attitude stabilization of a rigid body with the use of restoring and dissipative torques is studied. The possibility of implementing a control system in which the restoring torque tends to zero as time increases, and the only remaining control torque is a linear time-invariant dissipative one, is investigated. Both cases of linear and essentially nonlinear restoring torques are considered. With the aid of the Lyapunov direct method and the comparison method, conditions are derived under which we can guarantee stability or asymptotic stability of an equilibrium position of the body despite the vanishing of the restoring torque. A numerical simulation is provided to demonstrate the effectiveness of analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beletsky, V.V.: Motion of an Artificial Satellite About its Center of Mass. Israel Program for Scientific Translation, Jerusalem (1966)

    Google Scholar 

  2. Zubov, V.I.: Theorie de la Commande. Mir, Moscow (1978). (in French)

    MATH  Google Scholar 

  3. Wertz, J.R.: Spacecraft Attitude Determination and Control. D. Reidel Publishing Co., Dordrecht (1985)

    Google Scholar 

  4. Sazonov, V.V., Sarychev, V.A.: Effect of dissipative magnetic moment on rotation of a satellite relative to the center of mass. Mech. Solids 18(2), 1–9 (1983)

    Google Scholar 

  5. Ovchinnikov, M.Y., Pen’kov, V.I., Roldugin, D.S., Karpenko, S.O.: Investigation of the effectiveness of an algorithm of active magnetic damping. Cosm. Res. 50(2), 170–176 (2012). https://doi.org/10.1134/S0010952512010078

    Article  Google Scholar 

  6. Tikhonov, A.A., Tkhai, V.N.: Symmetrical oscillations of charged gyrostat in weakly elliptical orbit with small inclination. Nonlinear Dyn. 85(3), 1919–1927 (2016). https://doi.org/10.1007/s11071-016-2805-2

    Article  Google Scholar 

  7. Aleksandrov, A.Yu., Antipov, K.A., Platonov, A.V., Tikhonov, A.A.: Electrodynamic attitude stabilization of a satellite in the Konig frame. Nonlinear Dyn. 82(3), 1493–1505 (2015). https://doi.org/10.1007/s11071-015-2256-1

  8. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1988)

    Google Scholar 

  9. Ovchinnikov, M.Y., Ivanov, D.S., Ivlev, N.A., Karpenko, S.O., Roldugin, D.S., Tkachev, S.S.: Development, integrated investigation, laboratory and in-flight testing of Chibis-M microsatellite ADCS. Acta Astronaut. 93(1), 23–33 (2014). https://doi.org/10.1016/j.actaastro.2013.06.030

    Article  Google Scholar 

  10. Aleksandrov, A.Yu., Tikhonov, A.A.: Monoaxial electrodynamic stabilization of earth satellite in the orbital coordinate system. Autom. Remote Control 74(8), 1249–1256 (2013). https://doi.org/10.1134/S000511791308002X

  11. Doroshin, A.V.: Evolution of the precessional motion of unbalanced gyrostats of variable structure. J. Appl. Math. Mech. 72(3), 259–269 (2008). https://doi.org/10.1016/j.jappmathmech.2008.07.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Ivanov, D.S., Ovchinnikov, M.Y., Pen’kov, V.I.: Laboratory study of magnetic properties of hysteresis rods for attitude control systems of minisatellites. J. Comput. Syst. Sci. Int. 52(1), 145–164 (2013). https://doi.org/10.1134/S1064230712060032

    Article  MATH  Google Scholar 

  13. Antipov, K.A., Tikhonov, A.A.: Electrodynamic control for spacecraft attitude stability in the geomagnetic field. Cosm. Res. 52(6), 472–480 (2014). https://doi.org/10.1134/S001095251406001X

    Article  Google Scholar 

  14. Melnikov, G.I., Dudarenko, N.A., Melnikov, V.G., Alyshev, A.S.: Parametric identification of inertial parameters. Appl. Math. Sci. 9(136), 6757–6765 (2015). https://doi.org/10.12988/ams.2015.59584

    Google Scholar 

  15. Hatvani, L.: The effect of damping on the stability properties of equilibria of non-autonomous systems. J. Appl. Math. Mech. 65(4), 707–713 (2001). https://doi.org/10.1016/S0021-8928(01)00076-4

    Article  MathSciNet  Google Scholar 

  16. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Springer, New York (1977)

    Book  MATH  Google Scholar 

  17. Rumyantsev, V.V., Oziraner, A.S.: Stability and Stabilization of Motion with Respect to a Part of Variables. Nauka, Moscow (1987). (in Russian)

    MATH  Google Scholar 

  18. Hatvani, L.: On the stability of the zero solution of nonlinear second order differential equations. Acta Sci. Math. 57, 367–371 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Cantarelli, G.: The stability of the equilibrium position of scleronomous mechanical systems. J. Appl. Math. Mech. 66(6), 943–956 (2002). https://doi.org/10.1016/S0021-8928(02)00136-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Sugie, J., Amano, Y.: Global asymptotic stability of nonautonomous systems of Lienard type. J. Math. Anal. Appl. 289(2), 673–690 (2004). https://doi.org/10.1016/j.jmaa.2003.09.023

    Article  MathSciNet  MATH  Google Scholar 

  21. Aleksandrov, A.Yu.: The stability of the equilibrium positions of non-linear non-autonomous mechanical systems. J. Appl. Math. Mech. 71(3), 324–338 (2007). https://doi.org/10.1016/j.jappmathmech.2007.07.015

  22. Aleksandrov, A.Yu., Kosov, A.A.: Asymptotic stability of equilibrium positions of mechanical systems with a nonstationary leading parameter. J. Comput. Syst. Sci. Int. 47(3), 332–345 (2008). https://doi.org/10.1134/S1064230708030027

  23. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  24. Siljak, D.D.: Decentralized Control of Complex Systems. Academic Press, New York (1991)

    MATH  Google Scholar 

  25. Krasil’nikov, P.S.: Functional extensions of a solution germ space of first order differential equation and their applications. Nonlinear Anal. Theory Methods Appl. 28(2), 359–375 (1997). https://doi.org/10.1016/0362-546X(95)00150-T

    Article  MathSciNet  MATH  Google Scholar 

  26. Krasil’nikov, P.S.: A generalized scheme for constructing Lyapunov functions from first integrals. J. Appl. Math. Mech. 65(2), 195–204 (2001). https://doi.org/10.1016/S0021-8928(01)00023-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Smirnov, E.Y.: Control of rotational motion of a free solid by means of pendulums. Mech. Solids 15(3), 1–5 (1980)

    Google Scholar 

  28. Haller, G., Ponsioen, S.: Exact model reduction by a slow-fast decomposition of nonlinear mechanical systems. Nonlinear Dyn. 90(1), 617–647 (2017). https://doi.org/10.1007/s11071-017-3685-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Aleksandrov, A.Yu., Kosov, A.A., Chen, Y.: Stability and stabilization of mechanical systems with switching. Autom. Remote Control 72(6), 1143–1154 (2011). https://doi.org/10.1134/S0005117911060026

  30. Aleksandrov, A.Y., Aleksandrova, E.B.: Asymptotic stability conditions for a class of hybrid mechanical systems with switched nonlinear positional forces. Nonlinear Dyn. 83(4), 2427–2434 (2016). https://doi.org/10.1007/s11071-015-2491-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Aleksandrov, A.Yu., Tikhonov, A.A.: Attitude stabilization of a rigid body in conditions of decreasing dissipation. Vestn. St. Petersburg Univ. Math. 50(4), 384–391 (2017). https://doi.org/10.3103/S1063454117040021

  32. Gendelman, O.V., Lamarque, C.H.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24, 501–509 (2005). https://doi.org/10.1016/j.chaos.2004.09.088

    Article  MathSciNet  MATH  Google Scholar 

  33. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015). https://doi.org/10.1007/s11071-015-2002-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Kozmin, A., Mikhlin, Y., Pierre, C.: Transient in a two-DOF nonlinear system. Nonlinear Dyn. 51(1–2), 141–154 (2008). https://doi.org/10.1007/s11071-007-9198-1

    MATH  Google Scholar 

  35. Beards, C.F.: Engineering Vibration Analysis with Application to Control Systems. Edward Arnold, London (1995)

    Google Scholar 

  36. Samba, Y.C.M., Pascal, M.: Nonlinear effects in dynamic analysis of flexible multibody systems. In: Proceedings of the ASME Design Engineering Technical Conference, 18th Biennial Conference on Mechanical Vibration and Noise, Pittsburgh, PA, USA, vol. 6 A, pp. 453–459 (2001)

  37. Aleksandrov, A.Yu., Aleksandrova, E.B., Zhabko, A.P.: Asymptotic stability conditions and estimates of solutions for nonlinear multiconnected time-delay systems. Circuits Syst. Signal Process. 35, 3531–3554 (2016). https://doi.org/10.1007/s00034-015-0227-x

  38. Kosov, A.A.: The exponential stability and stabilization of non-autonomous mechanical systems with non-conservative forces. J. Appl. Math. Mech. 71(3), 371–384 (2007). https://doi.org/10.1016/j.jappmathmech.2007.07.011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Foundation for Basic Research (Grant Nos. 16-01-00587-a and 17-01-00672-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tikhonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.Y., Tikhonov, A.A. Attitude stabilization of a rigid body under the action of a vanishing control torque. Nonlinear Dyn 93, 285–293 (2018). https://doi.org/10.1007/s11071-018-4191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4191-4

Keywords

Navigation