Skip to main content
Log in

Finite-time attitude control for rigid spacecraft subject to actuator saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the problem of attitude stabilizing control for rigid spacecraft in the presence of input constraints. To address this problem, a smooth model is first presented such that its output is always in agreement with the constraints imposed by the actuators. Then, based on the “adding a power integrator” method and the backstepping technique, a novel finite-time attitude control scheme is proposed. The finite-time stability of the resultant closed-loop system is guaranteed by using the Lyapunov approach. Finally, the effectiveness of the control scheme derived here is illustrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kapila, V., Grigoriadis, K. (eds.): Actuator Saturation Control. CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  2. Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust adaptive variable structure control of spacecraft under control input saturation. AIAA J. Guid. Control Dyn. 24(1), 14–22 (2001)

    Article  Google Scholar 

  3. Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust tracking control design for spacecraft under control input saturation. AIAA J. Guid. Control Dyn. 27(4), 627–633 (2004)

    Article  Google Scholar 

  4. de Ruiter, A.: Adaptive spacecraft attitude tracking control with actuator saturation. AIAA J. Guid. Control Dyn. 33(5), 1692–1696 (2010)

    Article  Google Scholar 

  5. Lu, K., Xia, Y., Fu, M.: Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf. Sci. 220, 343–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1605–1612 (2012)

    Article  Google Scholar 

  7. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011)

    Article  Google Scholar 

  8. Zou, A., Kumar, K.: Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1155–1162 (2012)

    Article  Google Scholar 

  9. Egeland, O., Godhavn, J.M.: Passivity-based adaptive attitude control of a rigid spacecraft. IEEE Trans. Autom. Control 39(4), 842–846 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, H., Li, S.: Semi-global finite-time attitude stabilization by output feedback for a rigid spacecraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 227(12), 1881–1891 (2013)

    Article  Google Scholar 

  12. Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73, 53–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, E., Sun, Z.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)

    Article  MATH  Google Scholar 

  14. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, L., Jia, Y.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78, 2779–2794 (2014)

    Article  MATH  Google Scholar 

  16. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zou, A.: Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Trans. Control Syst. Technol. 22(1), 338–345 (2014)

    Article  Google Scholar 

  18. Shao, S., Zong, Q., Tian, B., Wang, F.: Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement. J. Frankl. Inst. 354(12), 4656–4674 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zou, A., de Ruiter, A., Kumar, K.: Distributed finite-time velocity-free attitude coordination control for spacecraft formations. Automatica 67, 46–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zou, A., Kumar, K., Hou, Z., Liu, X.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(4), 950–963 (2011)

    Article  Google Scholar 

  21. Du, H., Cheng, Y., He, Y.: Finite-time attitude regulation control for a rigid spacecraft under input saturation. In: Proceedings of the 11th World Congress on Intelligent Control and Automation, pp. 1647–1651 (2014)

  22. Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. AIAA J. Guid. Control Dyn. 35(3), 740–748 (2012)

    Article  Google Scholar 

  23. Gui, H., Jin, L., Xu, S.: Simple finite-time attitude stabilization laws for rigid spacecraft with bounded inputs. Aerosp. Sci. Technol. 42, 176–186 (2015)

    Article  Google Scholar 

  24. Guo, Y., Song, S., Li, X., Li, P.: Terminal sliding mode control for attitude tracking of spacecraft under input saturation. J. Aerosp. Eng. 30(3), 06016006 (2017)

    Article  Google Scholar 

  25. Gui, H., Vukovich, G.: Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs. Int. J. Robust Nonlinear Control 27(1), 15–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, S., Zhao, L., Jia, Y.: Finite-time output feedback attitude stabilisation for rigid spacecraft with input constraints. IET Control Theory Appl. 10(14), 1740–1750 (2016)

    Article  MathSciNet  Google Scholar 

  27. Zou, A., de Ruiter, A., Kumar, K.: Finite-time output feedback attitude control for rigid spacecraft under control input saturation. J. Frankl. Inst. 353(17), 4442–4470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheng, Y., Du, H., He, Y., Jia, R.: Distributed finite-time attitude regulation for multiple rigid spacecraft via bounded control. Inf. Sci. 328, 144–157 (2016)

    Article  Google Scholar 

  29. Zou, A., de Ruiter, A., Kumar, K.: Finite-time attitude tracking control for rigid spacecraft with control input constraints. IET Control Theory Appl. 11(7), 931–940 (2017)

    Article  MathSciNet  Google Scholar 

  30. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng, Y., Du, H., He, Y., Jia, R.: Finite-time tracking control for a class of high-order nonlinear systems and its applications. Nonlinear Dyn. 76, 1133–1140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bhat, S., Bernstein, D.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51(5), 858–862 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  35. Zou, A., Fan, Z.: Distributed fixed-time attitude coordination control for multiple rigid spacecraft. Int. J. Robust Nonlinear Control (2018) (submitted)

  36. Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19(6), 467–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  38. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)

    MathSciNet  Google Scholar 

  39. Tsiotras, P.: Stabilization and optimality results for the attitude control problem. AIAA J. Guid. Control Dyn. 19(4), 772–779 (1996)

    Article  MATH  Google Scholar 

  40. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Autom. Control 36(11), 1241–1253 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, W., Qian, C.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39, 339–351 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Munkres, J.: Topology, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was support by Shantou University (STU) Scientific Research Foundation for Talents (NTF18015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Min Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

Define the dilation \(\delta _\lambda ^r(\xi _1)=\lambda \xi _1\). By noting that \(2-\alpha _1+\alpha _2=1+\alpha _1\), it follows that \(U(\xi _1)\) is homogeneous of degree \(1+\alpha _1\) with respect to the dilation \(\delta _\lambda ^r(\xi _1)\). Consider the function \(h(\xi _1, \alpha )=-\left[ \text{ sig }^{2-\alpha _1}(\xi _1)\right] ^TJ^{-1}\text{ sig }^{\alpha _2}(\xi _1)\), where \((\xi _1, \alpha ) \in S^3\times (0, \infty )\). Note that the function h is continuous and \(\xi _1\) belongs to a compact set. Thus, the image of h is included in \((-\infty , -\lambda _{\min }(J^{-1}))\) for all \(\xi _1\in S^3\) and \(\alpha =1\), since \(h(\xi _1, \alpha )=-\xi _1^TJ^{-1}\xi _1\) when \(\alpha =1\). By using the tube lemma [42], it is concluded that there exists an \(\epsilon >0\) such that for all \((\xi _1, \alpha )\in S^3\times (1-\epsilon , 1+\epsilon )\), \(h(\xi _1, \alpha )\le -\lambda _{\min }(J^{-1})/2\). Then, we can obtain \(U(\xi _1)\le -\lambda _{\min }(J^{-1})/2=-\lambda _{\min }(J^{-1})\left( \xi _1^T\xi _1\right) ^{\beta }/2\) for all \((\xi _1, \alpha )\in S^3\times (1-\epsilon , 1+\epsilon )\).

If \(\xi _1=0\), it is clear that \(U(\xi _1)\le -\lambda _{\min }(J^{-1})\left( \xi _1^T\xi _1\right) ^{\beta }/2\). For any \(\xi _1\in R^3{\setminus }0\), by Lemma 6, we have that \(\xi _1=\delta _\lambda ^r(\bar{\xi }_1)\), where \(\bar{\xi }_1\in S^3\). Then, we can obtain that

$$\begin{aligned} U(\xi _1)&=U(\delta _\lambda ^r(\bar{\xi }_1))=\lambda ^{1+\alpha _1}U(\bar{\xi }_1)\nonumber \\&\le -\frac{1}{2}\lambda ^{1+\alpha _1}\lambda _{\min }(J^{-1})\left( \bar{\xi }_1^T\bar{\xi }_1\right) ^{\beta }\nonumber \\&=-\frac{\lambda _{\min }(J^{-1})}{2}\left( \xi _1^T\xi _1\right) ^{\beta }. \end{aligned}$$
(54)

This completes the proof.

1.2 Proof of Proposition 2

Note that

$$\begin{aligned} \frac{\partial \text{ sig }^{1/\alpha _2}(u_{di})}{\partial t}&=-\,k_2^{1/\alpha _2} \frac{\partial (\xi _{1i})}{\partial t}\nonumber \\&=-\,k_2^{1/\alpha _2}\left| \omega _i\right| ^{1/\alpha _1-1}\dot{\omega }_i +k_2^{1/\alpha _2}k_1^{1/\alpha _1}\dot{q}_i\nonumber \\&=-\,k_2^{1/\alpha _2}\left| \omega _i\right| ^{1/\alpha _1-1} \left( f_i(\omega )+(J^{-1}u)_i\right) \nonumber \\&\quad +k_2^{1/\alpha _2}k_1^{1/\alpha _1}\dot{q}_i, \end{aligned}$$
(55)

where \((\cdot )_i\) denotes the i-th element of a vector. If \(\Vert q\Vert \le \Delta \) and \(\Vert \omega \Vert \le \Delta \), it is easy to verify that

$$\begin{aligned}&\left| \omega _i\right| ^{1/\alpha _1-1}\left( f_i(\omega )+(J^{-1}u)_i\right) \le \bar{m}_{1}\sum _{j=1}^3|q_j|^{\alpha _1}\nonumber \\&\quad +\bar{m}_{2}\sum _{j=1}^3|\xi _{1j}|^{\alpha _1}+\bar{m}_3\sum _{j=1}^3|\xi _{2j}|^{\alpha _1} \end{aligned}$$
(56)
$$\begin{aligned} \dot{q}_i\le \bar{m}_{4}\sum _{j=1}^3|q_j|^{\alpha _1} +\bar{m}_{5}\sum _{j=1}^3|\xi _{1j}|^{\alpha _1}, \end{aligned}$$
(57)

where \(\bar{m}_j (j=1, 2, \ldots , 5)\) are some positive constants, which implies that there exist some positive constants \(m_1, m_2\) and \(m_3\) such that

$$\begin{aligned}&\left| \frac{\partial \text{ sig }^{1/\alpha _2}(u_{di})}{\partial t}\right| \nonumber \\&\quad \le m_1\sum _{j=1}^3|q_j|^{\alpha _1} +m_2\sum _{j=1}^3|\xi _{1j}|^{\alpha _1}+m_3\sum _{j=1}^3|\xi _{2j}|^{\alpha _1}. \end{aligned}$$
(58)

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, AM., Kumar, K.D. Finite-time attitude control for rigid spacecraft subject to actuator saturation. Nonlinear Dyn 96, 1017–1035 (2019). https://doi.org/10.1007/s11071-019-04836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04836-7

Keywords

Navigation