Skip to main content
Log in

Attitude stabilization of a rigid body under disturbances with zero mean values

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The problem of attitude stabilization of a rigid body exposed to a nonstationary perturbing torque is investigated. The control torque consists of a restoring component and a dissipative one. Linear and nonlinear variants of restoring and perturbing torques are analyzed. Conditions of the asymptotic stability of the programmed orientation of the body are found with the use of the Lyapunov direct method and the averaging technique. The results of computer modeling, illustrating the conclusions obtained analytically, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(A_1, A_2, A_3\) :

Satellite principal central moments of inertia with respect to body frame axes \(x_1, x_2, x_3\), kg \(\cdot \) m\(^2\)

\(a_1, a_2\) :

Positive constants

\(\mathbf{B}\) :

Constant symmetric and negative definite matrix

\(b_1, b_2\) :

Positive constants

c :

Positive constant

\(c_1,\ldots , c_9\) :

Positive constants

\(\mathbf{D}_1(t)\) :

Continuous and bounded matrix for \(t\in [0,+\infty )\)

\(\mathbf{D}_2(t)\) :

Continuous and bounded matrix for \(t\in [0,+\infty )\)

\(\mathbf{J}\) :

Satellite inertia tensor in body frame \(x_1, x_2, x_3\), kg \(\cdot \) m\(^2\)

h :

Positive parameter

\( h_0\) :

Positive number

\(\vec L\) :

Control torque vector in body frame, N\(\cdot \)m

\(\vec L_d\) :

Dissipative component of control torque, N\(\cdot \)m

\(\vec L_p\) :

Perturbing torque vector in body frame, N\(\cdot \)m

\(\vec L_r\) :

Restoring component of control torque, N\(\cdot \)m

t :

Time, s

V :

Lyapunov function

\(V_1,\ldots , V_4\) :

Lyapunov functions

\(\alpha \) :

Positive constant

\(\delta \) :

Positive parameter

\(\bar{\delta }\) :

Positive parameter

\(\varepsilon \) :

Positive parameter such that \(\varepsilon \in (0,1)\)

\({\vec {\eta }}_1, {\vec {\eta }}_2, {\vec {\eta }}_3\) :

Unit vectors of body-fixed frame

\(\theta \) :

“Aircraft” angle

\(\lambda \) :

Auxiliary positive parameter

\(\lambda _0\) :

Positive number

\({\vec {\xi }}_1, {\vec {\xi }}_2, {\vec {\xi }}_3 \) :

Unit vectors of inertial frame

\(\varphi \) :

“Aircraft” angle

\(\psi \) :

“Aircraft” angle

\(\vec \omega \) :

Angular velocity of satellite in inertial reference frame, rad/s

References

  1. Beletsky, V.V., Yanshin, A.M.: The Influence of Aerodynamic Forces on Spacecraft Rotation. Naukova Dumka, Kiev (1984).. (in Russian)

    Google Scholar 

  2. Krasil’nikov, P.S.: Applied Methods for the Study of Nonlinear Oscillations. Izhevsk Institute of Computer Science, Izhevsk (2015).. (in Russian)

    Google Scholar 

  3. Belyaev, A.K., Irschik, H.: On the dynamic instability of components in complex structures. Int. J. Solids Struct. 34(17), 2199–2217 (1997). https://doi.org/10.1016/S0020-7683(96)00139-4

    Article  MATH  Google Scholar 

  4. Xu, Y., Guo, R., Jia, W.: Stochastic averaging for a class of single degree of freedom systems with combined Gaussian noises. Acta Mech. 225, 2611–2620 (2014). https://doi.org/10.1007/s00707-013-1040-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Mashtakov, Y.V., Ovchinnikov, M.Y., Tkachev, S.S.: Study of the disturbances effect on small satellite route tracking accuracy. Acta Astronaut. 129, 22–31 (2016). https://doi.org/10.1016/j.actaastro.2016.08.028

    Article  Google Scholar 

  6. Ivanov, D., Koptev, M., Mashtakov, Y., Ovchinnikov, M., Proshunin, N., Tkachev, S., Fedoseev, A., Shachkov, M.: Determination of disturbances acting on small satellite mock-up on air bearing table. Acta Astronaut. 142, 265–276 (2018). https://doi.org/10.1016/j.actaastro.2017.11.010

    Article  Google Scholar 

  7. Torres, P.J., Madhusudhanan, P., Esposito, L.W.: Mathematical analysis of a model for Moon-triggered clumping in Saturn’s rings. Phys. D Nonlinear Phenom. 259(15), 55–62 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chen, L., Lou, Q., Zhuang, Q.: A bounded optimal control for maximizing the reliability of randomly excited nonlinear oscillators with fractional derivative damping. Acta Mech. 223, 2703–2721 (2012). https://doi.org/10.1007/s00707-012-0722-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Emel’yanov, N.V.: Perturbed motion at small eccentricities. Sol. Syst. Res. 49, 346–359 (2015)

    Article  Google Scholar 

  10. Krasil’nikov, P.: Fast non-resonance rotations of spacecraft in restricted three body problem with magnetic torques. Int. J. Non-Linear Mech. 73(4), 43–50 (2015). https://doi.org/10.1016/j.ijnonlinmec.2014.11.003

    Article  Google Scholar 

  11. Feng, C., Zhu, W.: Asymptotic Lyapunov stability with probability one of Duffing oscillator subject to time-delayed feedback control and bounded noise excitation. Acta Mech. 208, 55–62 (2009). https://doi.org/10.1007/s00707-008-0126-3

    Article  MATH  Google Scholar 

  12. Ivanov, D.S., Ovchinnikov, M.Y., Penkov, V.I., Roldugin, D.S., Doronin, D.M., Ovchinnikov, A.V.: Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties. Acta Astronaut. 132, 103–110 (2017). https://doi.org/10.1016/j.actaastro.2016.11.045

    Article  Google Scholar 

  13. Joshi, R.P., Qiu, H., Tripathi, R.K.: Configuration studies for active electrostatic space radiation shielding. Acta Astronaut. 88, 138–145 (2013). https://doi.org/10.1016/j.actaastro.2013.03.011

    Article  Google Scholar 

  14. Elmandouh, A.A.: On the stability of the permanent rotations of a charged rigid body-gyrostat. Acta Mech. 228, 3947–3959 (2017). https://doi.org/10.1007/s00707-017-1927-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, K.D.: Satellite attitude stabilization using fluid rings. Acta Mech. 208, 117–131 (2009). https://doi.org/10.1007/s00707-008-0132-5

    Article  MATH  Google Scholar 

  16. Tikhonov, A.A.: Natural magneto-velocity coordinate system for satellite attitude stabilization: the concept and kinematic analysis. J. Appl. Comput. Mech. 7(4), 2113–2119 (2021)

    Google Scholar 

  17. Aleksandrov, A.Y., Tikhonov, A.A.: Nonlinear control for attitude stabilization of a rigid body forced by nonstationary disturbances with zero mean values. J. Appl. Comput. Mech. 7(2), 790–797 (2021). https://doi.org/10.22055/JACM.2020.35394.2658

    Article  Google Scholar 

  18. Beletsky, V.V.: Motion of an Artificial Satellite About its Center of Mass. Israel Program for Scientific Translation, Jerusalem (1966)

    Google Scholar 

  19. Zubov, V.I.: Lectures on Control Theory. Nauka, Moscow (1975). (Russian)

  20. Smirnov, E.Y.: Some Problems of Mathematical Control Theory. Leningrad State University, Leningrad (1981). (Russian)

  21. Ershov, D.Y., Lukyanenko, I.N., Smirnov, A.O., Aman, E.E.: Defining free damped oscillation in technological systems. IOP Conf. Ser. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/537/3/032035

    Article  Google Scholar 

  22. Dosaev, M.: Interaction between internal and external friction in rotation of vane with viscous filling. Appl. Math. Model. 68, 21–28 (2019). https://doi.org/10.1016/j.apm.2018.11.002

    Article  MathSciNet  MATH  Google Scholar 

  23. Martynyuk, A.A., Lakshmikantham, V., Leela, S.: Stability Analysis of Nonlinear Systems. Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  24. Malisoff, M., Mazenc, F.: Constructions of Strict Lyapunov Functions. Springer, London (2009)

    Book  Google Scholar 

  25. Smirnov, E.Y.: Control of rotational motion of a free solid by means of pendulums. Mech. Solids 15, 1–5 (1980)

    Google Scholar 

  26. Grigoriev, V.V., Bystrov, S.V., Mansurova, O.K., Pershin, I.M., Bushuev, A.B., Petrov, V.A.: Exponential stability regions estimation of nonlinear dynamical systems. Mekhatronika Avtom. Upr. 21(3), 131–135 (2020). https://doi.org/10.17587/mau.21.131-135

    Article  Google Scholar 

  27. Melnikov, G.I., Melnikov, V.G., Dudarenko, N.A., Talapov, V.V.: The method of exponential differential inequality in the estimation of solutions of nonlinear systems in the vicinity of the zero of the state space. Lect. Notes Mech. Eng. (2021). https://doi.org/10.1007/978-3-030-62062-2_20

    Article  Google Scholar 

  28. Aleksandrov, A.Y., Aleksandrova, E.B., Tikhonov, A.A.: Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system. Adv. Space Res. 62(1), 142–151 (2018). https://doi.org/10.1016/j.asr.2018.04.006

    Article  Google Scholar 

  29. Aleksandrov, A.Y.: On the stability of equilibrium of unsteady systems. J. Appl. Math. Mech. 60(2), 205–209 (1996). (in Russian)

    Article  MathSciNet  Google Scholar 

  30. Aleksandrov, A.Y.: On the asymptotical stability of solutions of nonstationary differential equation systems with homogeneous right hand sides. Dokl. Akad. Nauk. Ross. 349(3), 295–296 (1996). (in Russian)

    Google Scholar 

  31. Aleksandrov, A.Y., Aleksandrova, E.B., Zhabko, A.P.: Stability analysis for a class of nonlinear nonstationary systems via averaging. Nonlinear Dyn. Syst. Theory 13(4), 332–343 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River NJ (2002)

    MATH  Google Scholar 

  33. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-Linear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  34. Demidovich, B.P.: Lectures on Stability Theory. Nauka, Moscow (1967). (Russian)

  35. Holl, H.J., Belyaev, A.K., Irschik, H.: Simulation of the Duffing-oscillator with time-varying mass by a bem in time. Comput. Struct. 73(1–5), 177–186 (1999). https://doi.org/10.1016/S0045-7949(98)00281-8

    Article  MATH  Google Scholar 

  36. Gendelman, O.V., Lamarque, C.H.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24, 501–509 (2005)

    Article  MathSciNet  Google Scholar 

  37. Kovacic, I.: Forced vibrations of oscillators with a purely nonlinear power-form restoring force. J. Sound Vib. 330, 4313–4327 (2011)

    Article  Google Scholar 

  38. Kovacic, I., Zukovic, M.: Coupled purely nonlinear oscillators: normal modes and exact solutions for free and forced responses. Nonlinear Dyn. 87, 713–726 (2017). https://doi.org/10.1007/s11071-016-3070-0

    Article  Google Scholar 

  39. Porubov, A.V., Belyaev, A.K., Polyanskiy, V.A.: Nonlinear hybrid continuum-discrete dynamic model of influence of hydrogen concentration on strength of materials. Contin. Mech. Thermodyn. 33(4), 933–941 (2021). https://doi.org/10.1007/s00161-020-00936-7

    Article  MathSciNet  Google Scholar 

  40. Zubov, V.I.: Methods of A.M. Lyapunov and their Applications. P. Noordhoff Ltd., Groningen (1964)

    MATH  Google Scholar 

  41. Polyakov, A.: Generalized Homogeneity in Systems and Control. Springer, Cham (2020)

    Book  Google Scholar 

  42. Aleksandrov, A.Y., Antipov, K.A., Platonov, A.V., Tikhonov, A.A.: Electrodynamic stabilization of artificial earth satellites in the Konig coordinate system. J. Comput. Syst. Sci. Int. 55(2), 296–309 (2016). https://doi.org/10.1134/S1064230716010020

    Article  MathSciNet  MATH  Google Scholar 

  43. Aleksandrov, A.Y., Tikhonov, A.A.: Asymptotic stability of a satellite with electrodynamic attitude control in the orbital frame. Acta Astronaut. 139, 122–129 (2017). https://doi.org/10.1016/j.actaastro.2017.06.033

    Article  Google Scholar 

  44. Tikhonov, A.A., Petrov, K.G.: Multipole models of the earth’s magnetic field. Cosm. Res. 40(3), 203–212 (2002). https://doi.org/10.1023/A:1015916718570

    Article  Google Scholar 

  45. Ovchinnikov, M.Y., Penkov, V.I., Roldugin, D.S., Pichuzhkina, A.V.: Geomagnetic field models for satellite angular motion studies. Acta Astronaut. 144, 171–180 (2018). https://doi.org/10.1016/j.actaastro.2017.12.026

    Article  Google Scholar 

  46. Petrov, K.G., Tikhonov, A.A.: The moment of Lorentz forces, acting upon the charged satellite in the geomagnetic field. Part 1. The strength of the Earth’s magnetic field in the orbital coordinate system. Vest. St.Petersb. State Univ. Ser. 1(1), 92–100 (1999)

    MATH  Google Scholar 

  47. Petrov, K.G., Tikhonov, A.A.: The moment of Lorentz forces, acting upon the charged satellite in the geomagnetic field. Part 2.. The determination of the moment and estimations of its components. Vest. St.Petersb. State Univ. Ser. 1(3), 81–91 (1999)

    Google Scholar 

  48. Mashtakov, Y., Ovchinnikov, M., Wöske, F., Rievers, B., List, M.: Attitude determination & control system design for gravity recovery missions like grace. Acta Astronaut. 173, 172–182 (2020). https://doi.org/10.1016/j.actaastro.2020.04.019

    Article  Google Scholar 

  49. Tikhonov, A.A.: Resonance phenomena in oscillations of a gravity-oriented rigid body. Part 4: multifrequency resonances. St.Petersb. Univ. Mech. Bull. 1, 131–137 (2000)

    Google Scholar 

Download references

Acknowledgements

Sections 3 and 5 were supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2021-573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tikhonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.Y., Tikhonov, A.A. Attitude stabilization of a rigid body under disturbances with zero mean values. Acta Mech 233, 1231–1242 (2022). https://doi.org/10.1007/s00707-022-03163-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03163-0

Navigation