Skip to main content
Log in

Efficient potential well escape for bi-stable Duffing oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of escape from a potential well of bi-stable oscillators has attracted attention given the diversity of physical and engineering systems described by this mathematical model. Most previous studies have considered quasi-static dynamics leading to escape. In devising efficient escape strategies for structures, transient conditions have not yet received adequate consideration. In this study, the intra-well nonlinear resonant dynamics of bi-stable systems are studied and exploited, yielding a time-efficient strategy for triggering minimal amplitude escape by employing transient perturbations. The response characteristics of both, the symmetric and asymmetric double-well Duffing oscillators are explored analytically to identify the stable solution branches for any given forcing configuration. Based on the basins of attraction of the stable attractors, a novel actuation methodology employing controlled perturbations in the phase of the forcing for driving the system into a series of high-amplitude limit cycle oscillations and eventual escape to the desired stable solution is proposed. Additionally, accelerated settling to the desired configuration is achieved by implementing state feedback techniques. The proposed algorithm serves as a potential tool for implementing fast shape adaptation in bi-stable structural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For the purposes of this study, the first instance of the system response crossing over the potential barrier is considered as escape from the initial potential well.

  2. All numerical simulations in this study are conducted using the ODE45 Solver in MATLAB based on the Runge–Kutta method of numerical integration.

References

  1. Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: packing and rigidization. J. Spacecr. Rockets 51(3), 762–778 (2014). https://doi.org/10.2514/1.A32598

  2. Diaconu, C.G., Weaver, P.M., Mattioni, F.: Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin Walled Struct. 46(6), 689–701 (2008). https://doi.org/10.1016/j.tws.2007.11.002

  3. Zarepoor, M., Bilgen, O.: Constrained-energy cross-well actuation of the Duffing–Holmes oscillator. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–16 (2016). https://doi.org/10.2514/6.2016-0201

  4. Simsek, M.R., Bilgen, O.: A hybrid position feedback controller for inducing cross-well motion of bistable structures. In: 24th AIAA/AHS Adaptive Structures Conference (2016). https://doi.org/10.2514/6.2016-0821

  5. Mattioni, F., Weaver, P.M., Potter, K.D., Friswell, M.I.: Analysis of thermally induced multistable composites. Int. J. Solids Struct. 45(2), 657–675 (2008). https://doi.org/10.1016/j.ijsolstr.2007.08.031

  6. Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 3–6 (2010). https://doi.org/10.1063/1.3487780

  7. Arrieta, A.F., Ermanni, P.: On the snap-through dynamic characteristics for broadband energy harvesting with bi-stable composites. In: Proceedings of SPIE, Active and Passive Smart Structures and Integrated Systems, vol. 9057, p. 90570Z (2014). https://doi.org/10.1117/12.2045060

  8. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 23001 (2013). https://doi.org/10.1088/0964-1726/22/2/023001

  9. Casals-terré, J., Fargas-marques, A., Shkel, A.M., Member, A.: Snap-action bistable micromechanisms actuated by nonlinear resonance. J. Microelectromech. Syst. 17(5), 1082–1093 (2008)

    Article  Google Scholar 

  10. Hoffmann, M., Kopka, P., Voges, E.: All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining. IEEE J. Sel. Top. Quantum Electron. 5(1), 46–51 (1999). https://doi.org/10.1109/2944.748104

  11. Matoba, H., Ishikawa, T.: A bistable snapping microactuator. In: IEEE Micro Electro Mechanical Systems Workshop, 632, pp. 45–50 (1994). https://doi.org/10.1109/MEMSYS.1994.555596

  12. Qiu, J., Lang, J., Slocum, A.H., Striimple, R.: A high-current electrothermal bistable mems relay. In: Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference, pp. 64–67 (2003)

  13. Petralia, M.T., Wood, R.J.: Fabrication and analysis of dielectric-elastomer minimum-energy structures for highly-deformable soft robotic systems. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010—Conference Proceedings, pp. 2357–2363 (2010). https://doi.org/10.1109/IROS.2010.5652506

  14. Rosset, S., Oa, A., Shintake, J., Shea, H.R.: Model and design of dielectric elastomer minimum energy structures. Smart Mater. Struct. 23(8), 085021 (2014). https://doi.org/10.1088/0964-1726/23/8/085021

  15. Kofod, G., Paajanen, M., Bauer, S.: Self-organized minimum-energy structures for dielectric elastomer actuators. Appl. Phys. A Mater. Sci. Process. 85(2), 141–143 (2006). https://doi.org/10.1007/s00339-006-3680-3

  16. Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. Lond. A 421, 195–225 (1989). https://doi.org/10.1098/rspa.1983.0054

  17. Thompson, J.M.T., Bishop, S.R., Leung, L.M.: Fractal basins and chaotic bifurcations prior to escape from a potential well. Phys. Lett. A 121(3), 116–120 (1987). https://doi.org/10.1016/0375-9601(87)90403-8

  18. Stewart, H.B., Thompson, J.M.T., Ueda, Y., Lansbury, A.N.: Optimal escape from potential wells-patterns of regular and chaotic bifurcation. Physica D 85(1–2), 259–295 (1995). https://doi.org/10.1016/0167-2789(95)00172-Z

  19. Thompson, J.M.T.: Loss of engineering integrity due to the erosion of absolute and transient basin boundaries. In: Schiehlen, W. (ed.) Nonlinear Dynamics in Engineering Systems International Union of Theoretical and Applied Mechanics, pp 313–320. Springer, Berlin (1990)

    Google Scholar 

  20. Szemplińska-Stupnicka, W.: Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dyn. 3(3), 225–243 (1992). https://doi.org/10.1007/BF00122303

  21. Miller, N.J., Shaw, S.W.: Escape statistics for parameter sweeps through bifurcations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(4), 1–8 (2012). https://doi.org/10.1103/PhysRevE.85.046202

  22. Lansbury, A.N., Thompson, J.M.T.: Incursive fractals: a robust mechanism of basin erosion preceding the optimal escape from a potential well. Phys. Lett. A 150(8–9), 355–361 (1990). https://doi.org/10.1016/0375-9601(90)90231-C

  23. Lansbury, A.N., Thompson, J.M.T., Stewart, H.B.: Basin erosion in the twin-well duffing oscillator: two distinct bifurcation scenarios. Int. J. Bifurc. Chaos 2(2), 505–532 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Soliman, M.S., Thompson, J.M.T.: Transient and steady state analysis of capsize phenomena. Appl. Ocean Res. 13(2), 82–92 (1991). https://doi.org/10.1016/S0141-1187(05)80065-3

  25. Thompson, J.M.T., Stewart, H.B., Ueda, Y.: Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. Phys. Rev. E 49(2), 1019–1027 (1994). https://doi.org/10.1103/PhysRevE.49.1019

  26. Wright, J.A., Deane, J.H., Bartuccelli, M., Gentile, G.: Basins of attraction in forced systems with time-varying dissipation. Commun. Nonlinear Sci. Numer. Simul. 29(1), 72–87 (2015). https://doi.org/10.1016/j.cnsns.2015.04.021

  27. Wright, J.A., Bartuccelli, M., Gentile, G.: The effects of time-dependent dissipation on the basins of attraction for the pendulum with oscillating support. Nonlinear Dyn. 77(4), 1377–1409 (2014). https://doi.org/10.1007/s11071-014-1386-1

  28. Wright, J.A.: Safe basins for a nonlinear oscillator with ramped forcing. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2194), 20160190 (2016)

    MATH  Google Scholar 

  29. Virgin, L.N., Plaut, R.H., Cheng, C.C.: Prediction of escape from a potential well under harmonic excitation. Int. J. Non Linear Mech. 27(3), 357–365 (1992). https://doi.org/10.1016/0020-7462(92)90005-R

  30. Monroe, R.J., Shaw, S.W.: On the transient response of forced nonlinear oscillators. Nonlinear Dyn. 67(4), 2609–2619 (2012). https://doi.org/10.1007/s11071-011-0174-4

  31. Dykman, M.I.: Poisson-noise-induced escape from a metastable state. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(5), 1–7 (2010). https://doi.org/10.1103/PhysRevE.81.051124

  32. Dykman, M.I., Schwartz, I.B., Shapiro, M.: Scaling in activated escape of underdamped systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(2), 021102 (2005). https://doi.org/10.1103/PhysRevE.72.021102

  33. Smelyanskiy, V., Dykman, M., Golding, B.: Time oscillations of escape rates in periodically driven systems. Phys. Rev. Lett. (1999). https://doi.org/10.1103/PhysRevLett.82.3193

  34. Dykman, M.I., Golding, B., McCann, L.I., Smelyanskiy, V.N., Luchinsky, D.G., Mannella, R., McClintock, P.V.E.: Activated escape of periodically driven systems. Chaos 11(3), 587–594 (2001). https://doi.org/10.1063/1.1380368

  35. Udani, J.P., Arrieta, A.F.: Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection. Appl. Phy. Lett. 111(21), 213901 (2017)

    Article  Google Scholar 

  36. Mallick, D., Amann, A., Roy, S.: Surfing the high energy output branch of nonlinear energy harvesters. Phys. Rev. Lett. 117(19), 197–701 (2016). https://doi.org/10.1103/PhysRevLett.117.197701

  37. Arrieta, A.F., Bilgen, O., Friswell, M.I., Hagedorn, P.: Dynamic control for morphing of bi-stable composites. J. Intell. Mater. Syst. Struct. 24(3), 1–10 (2012). https://doi.org/10.1177/1045389X12449918

  38. Arrieta, A.F., Wagg, D.J., Neild, S.A.: Dynamic snap-through for morphing of bi-stable composite plates. J. Intell. Mater. Syst. Struct. 22(2), 103–112 (2011). https://doi.org/10.1177/1045389X10390248

  39. Guo, Q., Mehta, A.K., Grover, M.A., Chen, W., Lynn, D.G., Chen, Z.: Shape selection and multi-stability in helical ribbons. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4878941

  40. Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phy. Lett. 106(9), 093901 (2015)

    Article  Google Scholar 

  41. Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008). https://doi.org/10.1016/j.jsv.2007.08.035

  42. Panigrahi, S., Feeny, B., Diaz, A.: Harmonic balance analysis of snap-through orbits in an undamped duffing oscillator. J. Vib. Acoust. 137(c), 1–5 (2015). https://doi.org/10.1115/1.4030718

  43. Stanton, S.C., Owens, B.A.M., Mann, B.P.: Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. 331(15), 3617–3627 (2012). https://doi.org/10.1016/j.jsv.2012.03.012

  44. Thompson, J.M.T., Soliman, M.S.: Indeterminate jumps to resonance from a tangled saddle-node bifurcation. Proc. R. Soc. Lond. 268, 527 (1962). https://doi.org/10.1098/rspa.1974.0120

  45. Stewart, H.B., Ueda, Y.: Catastrophes with indeterminate outcome. Proc. R. Soc. Lond. 268, 527 (1962). https://doi.org/10.1098/rspa.1974.0120

  46. Gottwald, J., Virgin, L., Dowell, E.: Routes to escape from an energy well. J. Sound Vib. 187(1), 133–144 (1995). https://doi.org/10.1006/jsvi.1995.0506

  47. Senba, A., Ikeda, T., Ueda, T.: A two-way morphing actuation of bi-stable composites with piezoelectric fibers. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2010). https://doi.org/10.2514/6.2010-2744

  48. Bilgen, O., Arieta, A.F., Friswell, M.I., Hagedorn, P.: Dynamic control of a bistable wing under aerodynamic loading. Smart Mater. Struct. 22(2), 025020 (2013). https://doi.org/10.1088/0964-1726/22/2/025020

  49. Schultz, M.R., Hyer, M.W., Brett Williams, R., Keats Wilkie, W., Inman, D.J.: Snap-through of unsymmetric laminates using piezocomposite actuators. Compos. Sci. Technol. 66(14), 2442–2448 (2006). https://doi.org/10.1016/j.compscitech.2006.01.027

  50. Dano, M.L., Hyer, M.W.: SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates. Int. J. Solids Struct. 40(22), 5949–5972 (2003). https://doi.org/10.1016/S0020-7683(03)00374-3

  51. Chicone, C.: Ordinary Differential Equations with Applications, vol. 34. Springer, Berlin (2006). https://doi.org/10.1007/0-387-35794-7

Download references

Acknowledgements

J. P. Udani and A. F. Arrieta gratefully acknowledge the support of the Purdue Research Foundation (PRF); this research was funded through start-up funds provided by PRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres F. Arrieta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Comparison of forcing signals

See Fig. 14.

Fig. 14
figure 14

(Colour Online) Comparison of the forcing signals for a sample period of final 20 s before escape via quasi-static continuation dynamics (solid black line), transient dynamics (dashed red line) and excitation at linearized natural frequency of the potential well (dot blue line)

Algorithm

See Fig. 15.

Fig. 15
figure 15

Detailed algorithm for efficient escape strategy from stable well of a Duffing system as described in Sect. 4.1. Here, \(\phi _{initial}\) is the initial phase of the forcing signal, \(t_{max}\) is the maximum time before which the system should jump between limit cycles, \(\phi _{rel}\) is the relative phase of the forcing signal and \(\phi _{ext}\) is the additional phase perturbation introduced

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udani, J.P., Arrieta, A.F. Efficient potential well escape for bi-stable Duffing oscillators. Nonlinear Dyn 92, 1045–1059 (2018). https://doi.org/10.1007/s11071-018-4107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4107-3

Keywords

Navigation