Skip to main content
Log in

Nonlinear dynamics of a bistable system impacting a sinusoidally vibrating shaker

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Bistable systems have seen significant interest in recent years, in applications ranging from energy harvesting, impact mitigation, and aerospace, to precision sensing and metamaterials. However, most investigations of bistable systems consider only continuous external forcing. The literature on the topic of vibroimpact dynamics is vast, but is mostly limited to monostable systems. In this work, we advance the state of knowledge by considering the fundamental problem of a one degree-of-freedom bistable system subjected to vibroimpact forcing by a sinusoidally vibrating shaker. Using computational models, we find that by varying excitation amplitude and frequency, a rich nonlinear dynamic behavior can be observed. Some responses exhibit only intrawell dynamics, while others display interwell motion that may converge to a second equilibrium. Analytical equations are derived to estimate the amplitude threshold that corresponds to the excitation amplitude required to observe interwell motion. The influence of the excitation frequency on the nonlinear dynamics of the system includes the presence of a local minimum in the threshold which is linked to a nonlinear resonance of the system. Further, response types can be differentiated by aperiodic (including chaotic) and periodic responses that include responses of periods one through six. In addition to computational simulations, the existence and stability of periodic orbits are determined using a shooting method based on the response over a single cycle. Experimental work using a magnetic bistable pendulum qualitatively validates the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data and source codes used in this work can be made available upon request to the corresponding author Julien Meaud (julien.meaud@me.gatech.edu).

References

  1. Shan, S., Kang, S.H., Raney, J.R., Wang, P., Fang, L., Candido, F., Lewis, J.A., Bertoldi, K.: Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27(29), 4296–4301 (2015)

    Article  Google Scholar 

  2. Meaud, J.: Multistable two-dimensional spring-mass lattices with tunable band gaps and wave directionality. J. Sound Vib. 434, 44–62 (2018)

    Article  Google Scholar 

  3. Ramakrishnan, V., Frazier, M.: Multistable metamaterial on elastic foundation enables tunable morphology for elastic wave control. J. Appl. Phys. 127(22), 225104 (2020)

    Article  Google Scholar 

  4. Mann, B., Sims, N.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1), 515–530 (2009). https://doi.org/10.1016/j.jsv.2008.06.011

    Article  Google Scholar 

  5. Harne, R.L., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  6. Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2013)

    Article  Google Scholar 

  7. Yasuda, H., Buskohl, P.R., Gillman, A., Murphey, T.D., Stepney, S., Vaia, R.A., Raney, J.R.: Mechanical computing. Nature 598(7879), 39–48 (2021)

  8. Bilal, O.R., Foehr, A., Daraio, C.: Bistable metamaterial for switching and cascading elastic vibrations. Proc. Natl. Acad. Sci. 114(18), 4603–4606 (2017)

    Article  Google Scholar 

  9. Xia, Y., Ruzzene, M., Erturk, A.: Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Appl. Phys. Lett. 114(9), 093501 (2019)

    Article  Google Scholar 

  10. Raney, J.R., Nadkarni, N., Daraio, C., Kochmann, D.M., Lewis, J.A., Bertoldi, K.: Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. 113(35), 9722–9727 (2016)

    Article  Google Scholar 

  11. Arrieta, A., Hagedorn, P., Erturk, A., Inman, D.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)

    Article  Google Scholar 

  12. Virgin, L.N.: Vibration of Axially-Loaded Structures. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  13. Wang, K.-W., Harne, R.L.: Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing. John Wiley & Sons, London (2017)

    MATH  Google Scholar 

  14. Datseris, G., Parlitz, U.: Nonlinear Dynamics: A Concise Introduction Interlaced with Code. Springer Nature, Berlin (2022)

    Book  MATH  Google Scholar 

  15. Luo, A.C., Han, R.P.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 10(1), 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  16. Umeda, M., Nakamura, K., Ueha, S.: Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Jpn. J. Appl. Phys. 35(5S), 3267 (1996)

    Article  Google Scholar 

  17. Babitsky, V.I.: Theory of Vibro-Impact Systems and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  18. Luo, A.C., Guo, Y.: Vibro-Impact Dynamics. John Wiley & Sons, London (2012)

    MATH  Google Scholar 

  19. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications, vol. 43. Springer, Berlin (2009)

    MATH  Google Scholar 

  20. Shaw, S., Holmes, P.: A periodically forced impact oscillator with large dissipation (1983)

  21. Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106(9), 093901 (2015)

    Article  Google Scholar 

  22. Gu, L., Livermore, C.: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct. 20(4), 045004 (2011)

    Article  Google Scholar 

  23. Xie, Z., Kwuimy, C.K., Wang, T., Ding, X., Huang, W.: Theoretical analysis of an impact-bistable piezoelectric energy harvester. Eur. Phys. J. Plus 134(5), 1–10 (2019)

    Article  Google Scholar 

  24. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rackauckas, C., Nie, Q.: Differentialequations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1) (2017)

  26. Budd, C., Dux, F.: Chattering and related behaviour in impact oscillators. Philos. Trans. R. Soc. Lond. Ser. A. Phys. Eng. Sci. 347(1683), 365–389 (1994)

    MATH  Google Scholar 

  27. Thompson, J., Ghaffari, R.: Chaos after period-doubling bifurcations in the resonance of an impact oscillator. Phys. Lett. A 91(1), 5–8 (1982). https://doi.org/10.1016/0375-9601(82)90248-1

    Article  MathSciNet  Google Scholar 

  28. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.-C.: Nonlinear normal modes, part ii: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  29. Sracic, M.W., Allen, M.S.: Numerical continuation of periodic orbits for harmonically forced nonlinear systems, In: Civil Engineering Topics, vol. 4, pp. 51–69. Springer, Berlin (2011)

  30. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. John Wiley & Sons, London (2008)

    MATH  Google Scholar 

Download references

Funding

This study was supported by NSF Grant CMMI 2037565, the Georgia Institute of Technology Quantum Alliance, and the Woodruff Launch Seed Grant at Georgia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Meaud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1454 KB)

Supplementary file 2 (mp4 106 KB)

Supplementary file 3 (mp4 113 KB)

Supplementary file 4 (mp4 402 KB)

Supplementary file 5 (mp4 213 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouleau, M., Craig, S., Xia, Y. et al. Nonlinear dynamics of a bistable system impacting a sinusoidally vibrating shaker. Nonlinear Dyn 110, 3015–3030 (2022). https://doi.org/10.1007/s11071-022-07793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07793-w

Keywords

Navigation