Advertisement

Nonlinear Dynamics

, Volume 92, Issue 3, pp 1045–1059 | Cite as

Efficient potential well escape for bi-stable Duffing oscillators

  • Janav P. Udani
  • Andres F. Arrieta
Original Paper
  • 297 Downloads

Abstract

The problem of escape from a potential well of bi-stable oscillators has attracted attention given the diversity of physical and engineering systems described by this mathematical model. Most previous studies have considered quasi-static dynamics leading to escape. In devising efficient escape strategies for structures, transient conditions have not yet received adequate consideration. In this study, the intra-well nonlinear resonant dynamics of bi-stable systems are studied and exploited, yielding a time-efficient strategy for triggering minimal amplitude escape by employing transient perturbations. The response characteristics of both, the symmetric and asymmetric double-well Duffing oscillators are explored analytically to identify the stable solution branches for any given forcing configuration. Based on the basins of attraction of the stable attractors, a novel actuation methodology employing controlled perturbations in the phase of the forcing for driving the system into a series of high-amplitude limit cycle oscillations and eventual escape to the desired stable solution is proposed. Additionally, accelerated settling to the desired configuration is achieved by implementing state feedback techniques. The proposed algorithm serves as a potential tool for implementing fast shape adaptation in bi-stable structural systems.

Keywords

Bi-stable systems Duffing oscillator Nonlinear dynamics Escape Limit cycle oscillations 

Notes

Acknowledgements

J. P. Udani and A. F. Arrieta gratefully acknowledge the support of the Purdue Research Foundation (PRF); this research was funded through start-up funds provided by PRF.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

References

  1. 1.
    Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: packing and rigidization. J. Spacecr. Rockets 51(3), 762–778 (2014).  https://doi.org/10.2514/1.A32598
  2. 2.
    Diaconu, C.G., Weaver, P.M., Mattioni, F.: Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin Walled Struct. 46(6), 689–701 (2008).  https://doi.org/10.1016/j.tws.2007.11.002
  3. 3.
    Zarepoor, M., Bilgen, O.: Constrained-energy cross-well actuation of the Duffing–Holmes oscillator. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–16 (2016).  https://doi.org/10.2514/6.2016-0201
  4. 4.
    Simsek, M.R., Bilgen, O.: A hybrid position feedback controller for inducing cross-well motion of bistable structures. In: 24th AIAA/AHS Adaptive Structures Conference (2016).  https://doi.org/10.2514/6.2016-0821
  5. 5.
    Mattioni, F., Weaver, P.M., Potter, K.D., Friswell, M.I.: Analysis of thermally induced multistable composites. Int. J. Solids Struct. 45(2), 657–675 (2008).  https://doi.org/10.1016/j.ijsolstr.2007.08.031
  6. 6.
    Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 3–6 (2010).  https://doi.org/10.1063/1.3487780
  7. 7.
    Arrieta, A.F., Ermanni, P.: On the snap-through dynamic characteristics for broadband energy harvesting with bi-stable composites. In: Proceedings of SPIE, Active and Passive Smart Structures and Integrated Systems, vol. 9057, p. 90570Z (2014).  https://doi.org/10.1117/12.2045060
  8. 8.
    Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 23001 (2013).  https://doi.org/10.1088/0964-1726/22/2/023001
  9. 9.
    Casals-terré, J., Fargas-marques, A., Shkel, A.M., Member, A.: Snap-action bistable micromechanisms actuated by nonlinear resonance. J. Microelectromech. Syst. 17(5), 1082–1093 (2008)CrossRefGoogle Scholar
  10. 10.
    Hoffmann, M., Kopka, P., Voges, E.: All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining. IEEE J. Sel. Top. Quantum Electron. 5(1), 46–51 (1999).  https://doi.org/10.1109/2944.748104
  11. 11.
    Matoba, H., Ishikawa, T.: A bistable snapping microactuator. In: IEEE Micro Electro Mechanical Systems Workshop, 632, pp. 45–50 (1994).  https://doi.org/10.1109/MEMSYS.1994.555596
  12. 12.
    Qiu, J., Lang, J., Slocum, A.H., Striimple, R.: A high-current electrothermal bistable mems relay. In: Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference, pp. 64–67 (2003)Google Scholar
  13. 13.
    Petralia, M.T., Wood, R.J.: Fabrication and analysis of dielectric-elastomer minimum-energy structures for highly-deformable soft robotic systems. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010—Conference Proceedings, pp. 2357–2363 (2010).  https://doi.org/10.1109/IROS.2010.5652506
  14. 14.
    Rosset, S., Oa, A., Shintake, J., Shea, H.R.: Model and design of dielectric elastomer minimum energy structures. Smart Mater. Struct. 23(8), 085021 (2014).  https://doi.org/10.1088/0964-1726/23/8/085021
  15. 15.
    Kofod, G., Paajanen, M., Bauer, S.: Self-organized minimum-energy structures for dielectric elastomer actuators. Appl. Phys. A Mater. Sci. Process. 85(2), 141–143 (2006).  https://doi.org/10.1007/s00339-006-3680-3
  16. 16.
    Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. Lond. A 421, 195–225 (1989).  https://doi.org/10.1098/rspa.1983.0054
  17. 17.
    Thompson, J.M.T., Bishop, S.R., Leung, L.M.: Fractal basins and chaotic bifurcations prior to escape from a potential well. Phys. Lett. A 121(3), 116–120 (1987).  https://doi.org/10.1016/0375-9601(87)90403-8
  18. 18.
    Stewart, H.B., Thompson, J.M.T., Ueda, Y., Lansbury, A.N.: Optimal escape from potential wells-patterns of regular and chaotic bifurcation. Physica D 85(1–2), 259–295 (1995).  https://doi.org/10.1016/0167-2789(95)00172-Z
  19. 19.
    Thompson, J.M.T.: Loss of engineering integrity due to the erosion of absolute and transient basin boundaries. In: Schiehlen, W. (ed.) Nonlinear Dynamics in Engineering Systems International Union of Theoretical and Applied Mechanics, pp 313–320. Springer, Berlin (1990)Google Scholar
  20. 20.
    Szemplińska-Stupnicka, W.: Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dyn. 3(3), 225–243 (1992).  https://doi.org/10.1007/BF00122303
  21. 21.
    Miller, N.J., Shaw, S.W.: Escape statistics for parameter sweeps through bifurcations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(4), 1–8 (2012).  https://doi.org/10.1103/PhysRevE.85.046202
  22. 22.
    Lansbury, A.N., Thompson, J.M.T.: Incursive fractals: a robust mechanism of basin erosion preceding the optimal escape from a potential well. Phys. Lett. A 150(8–9), 355–361 (1990).  https://doi.org/10.1016/0375-9601(90)90231-C
  23. 23.
    Lansbury, A.N., Thompson, J.M.T., Stewart, H.B.: Basin erosion in the twin-well duffing oscillator: two distinct bifurcation scenarios. Int. J. Bifurc. Chaos 2(2), 505–532 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Soliman, M.S., Thompson, J.M.T.: Transient and steady state analysis of capsize phenomena. Appl. Ocean Res. 13(2), 82–92 (1991).  https://doi.org/10.1016/S0141-1187(05)80065-3
  25. 25.
    Thompson, J.M.T., Stewart, H.B., Ueda, Y.: Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. Phys. Rev. E 49(2), 1019–1027 (1994).  https://doi.org/10.1103/PhysRevE.49.1019
  26. 26.
    Wright, J.A., Deane, J.H., Bartuccelli, M., Gentile, G.: Basins of attraction in forced systems with time-varying dissipation. Commun. Nonlinear Sci. Numer. Simul. 29(1), 72–87 (2015).  https://doi.org/10.1016/j.cnsns.2015.04.021
  27. 27.
    Wright, J.A., Bartuccelli, M., Gentile, G.: The effects of time-dependent dissipation on the basins of attraction for the pendulum with oscillating support. Nonlinear Dyn. 77(4), 1377–1409 (2014).  https://doi.org/10.1007/s11071-014-1386-1
  28. 28.
    Wright, J.A.: Safe basins for a nonlinear oscillator with ramped forcing. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2194), 20160190 (2016)zbMATHGoogle Scholar
  29. 29.
    Virgin, L.N., Plaut, R.H., Cheng, C.C.: Prediction of escape from a potential well under harmonic excitation. Int. J. Non Linear Mech. 27(3), 357–365 (1992).  https://doi.org/10.1016/0020-7462(92)90005-R
  30. 30.
    Monroe, R.J., Shaw, S.W.: On the transient response of forced nonlinear oscillators. Nonlinear Dyn. 67(4), 2609–2619 (2012).  https://doi.org/10.1007/s11071-011-0174-4
  31. 31.
    Dykman, M.I.: Poisson-noise-induced escape from a metastable state. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(5), 1–7 (2010).  https://doi.org/10.1103/PhysRevE.81.051124
  32. 32.
    Dykman, M.I., Schwartz, I.B., Shapiro, M.: Scaling in activated escape of underdamped systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(2), 021102 (2005).  https://doi.org/10.1103/PhysRevE.72.021102
  33. 33.
    Smelyanskiy, V., Dykman, M., Golding, B.: Time oscillations of escape rates in periodically driven systems. Phys. Rev. Lett. (1999).  https://doi.org/10.1103/PhysRevLett.82.3193
  34. 34.
    Dykman, M.I., Golding, B., McCann, L.I., Smelyanskiy, V.N., Luchinsky, D.G., Mannella, R., McClintock, P.V.E.: Activated escape of periodically driven systems. Chaos 11(3), 587–594 (2001).  https://doi.org/10.1063/1.1380368
  35. 35.
    Udani, J.P., Arrieta, A.F.: Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection. Appl. Phy. Lett. 111(21), 213901 (2017)CrossRefGoogle Scholar
  36. 36.
    Mallick, D., Amann, A., Roy, S.: Surfing the high energy output branch of nonlinear energy harvesters. Phys. Rev. Lett. 117(19), 197–701 (2016).  https://doi.org/10.1103/PhysRevLett.117.197701
  37. 37.
    Arrieta, A.F., Bilgen, O., Friswell, M.I., Hagedorn, P.: Dynamic control for morphing of bi-stable composites. J. Intell. Mater. Syst. Struct. 24(3), 1–10 (2012).  https://doi.org/10.1177/1045389X12449918
  38. 38.
    Arrieta, A.F., Wagg, D.J., Neild, S.A.: Dynamic snap-through for morphing of bi-stable composite plates. J. Intell. Mater. Syst. Struct. 22(2), 103–112 (2011).  https://doi.org/10.1177/1045389X10390248
  39. 39.
    Guo, Q., Mehta, A.K., Grover, M.A., Chen, W., Lynn, D.G., Chen, Z.: Shape selection and multi-stability in helical ribbons. Appl. Phys. Lett. (2014).  https://doi.org/10.1063/1.4878941
  40. 40.
    Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phy. Lett. 106(9), 093901 (2015)CrossRefGoogle Scholar
  41. 41.
    Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008).  https://doi.org/10.1016/j.jsv.2007.08.035
  42. 42.
    Panigrahi, S., Feeny, B., Diaz, A.: Harmonic balance analysis of snap-through orbits in an undamped duffing oscillator. J. Vib. Acoust. 137(c), 1–5 (2015).  https://doi.org/10.1115/1.4030718
  43. 43.
    Stanton, S.C., Owens, B.A.M., Mann, B.P.: Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. 331(15), 3617–3627 (2012).  https://doi.org/10.1016/j.jsv.2012.03.012
  44. 44.
    Thompson, J.M.T., Soliman, M.S.: Indeterminate jumps to resonance from a tangled saddle-node bifurcation. Proc. R. Soc. Lond. 268, 527 (1962).  https://doi.org/10.1098/rspa.1974.0120
  45. 45.
    Stewart, H.B., Ueda, Y.: Catastrophes with indeterminate outcome. Proc. R. Soc. Lond. 268, 527 (1962).  https://doi.org/10.1098/rspa.1974.0120
  46. 46.
    Gottwald, J., Virgin, L., Dowell, E.: Routes to escape from an energy well. J. Sound Vib. 187(1), 133–144 (1995).  https://doi.org/10.1006/jsvi.1995.0506
  47. 47.
    Senba, A., Ikeda, T., Ueda, T.: A two-way morphing actuation of bi-stable composites with piezoelectric fibers. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2010).  https://doi.org/10.2514/6.2010-2744
  48. 48.
    Bilgen, O., Arieta, A.F., Friswell, M.I., Hagedorn, P.: Dynamic control of a bistable wing under aerodynamic loading. Smart Mater. Struct. 22(2), 025020 (2013).  https://doi.org/10.1088/0964-1726/22/2/025020
  49. 49.
    Schultz, M.R., Hyer, M.W., Brett Williams, R., Keats Wilkie, W., Inman, D.J.: Snap-through of unsymmetric laminates using piezocomposite actuators. Compos. Sci. Technol. 66(14), 2442–2448 (2006).  https://doi.org/10.1016/j.compscitech.2006.01.027
  50. 50.
    Dano, M.L., Hyer, M.W.: SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates. Int. J. Solids Struct. 40(22), 5949–5972 (2003).  https://doi.org/10.1016/S0020-7683(03)00374-3
  51. 51.
    Chicone, C.: Ordinary Differential Equations with Applications, vol. 34. Springer, Berlin (2006).  https://doi.org/10.1007/0-387-35794-7

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPurdue UniversityINUSA

Personalised recommendations