Skip to main content
Log in

Stability of moving gap solitons in linearly coupled Bragg gratings with cubic–quintic nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The existence and stability of moving gap solitons in coupled Bragg gratings with cubic–quintic nonlinearity are investigated. It is shown that the model supports two disjoint families of solitons, known as Type 1 and Type 2 solitons, which fill the entire bandgap. There exist symmetric and asymmetric moving gap solitons within each family of solitons. By means of systematic numerical stability analysis, the stability regions in the plane of the coefficient of quintic nonlinearity versus frequency have been identified. We have analyzed the effects and interplay of quintic nonlinearity, coupling coefficient, and velocity on the stability of solitons and the stability regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hill, K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1263–1276 (1997)

    Article  Google Scholar 

  2. Kashyap, R.: Fiber Bragg Gratings. Academic Press, Boston (2010)

    Google Scholar 

  3. Russell, P.S.J.: Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures. J. Mod. Opt. 38, 1599–1619 (1991)

    Article  Google Scholar 

  4. de Sterke, C.M., Sipe, J.E.: Gap solitons. Prog. Opt. 33, 203–260 (1994)

    Article  Google Scholar 

  5. Krug, P.A., Stephens, T., Yoffe, G., Ouellette, F., Hill, P., Dhosi, G.: Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating. Electron. Lett. 31, 1091–1093 (1995)

    Article  Google Scholar 

  6. Litchinitser, N.M., Eggleton, B.J., Patterson, D.B.: Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression. J. Lightwave Technol. 15, 1303–1313 (1997)

    Article  Google Scholar 

  7. Loh, W.H., Laming, R.I., Robinson, N., Cavaciuti, A., Vaninetti, F., Anderson, C.J., Zervas, M.N., Cole, M.J.: Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fiber gratings. IEEE Photonics Technol. Lett. 8, 944–946 (1996)

    Article  Google Scholar 

  8. Cao, H., Atai, J., Shu, X., Chen, G.: Direct design of high channel-count fiber Bragg grating filters with low index modulation. Opt. Express 20, 12095–12110 (2012)

    Article  Google Scholar 

  9. Cao, H., Shu, X., Atai, J., Gbadebo, A., Xiong, B., Fan, T., Tang, H., Yang, W., Yu, Y.: Optimally-designed single fiber Bragg grating filter scheme for RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion. Opt. Express 22, 30442–30460 (2014)

    Article  Google Scholar 

  10. Winful, H.G., Marburger, J.H., Garmire, E.: Theory of bistability in nonlinear distributed feedback structures. Appl. Phys. Lett. 35, 379–381 (1979)

    Article  Google Scholar 

  11. Radic, S., George, N., Agrawal, G.P.: Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures. J. Opt. Soc. Am. B 12, 671–680 (1995)

    Article  Google Scholar 

  12. Sankey, N.D., Prelewitz, D.F., Brown, T.G.: All-optical switching in a nonlinear periodic-waveguide structure. Appl. Phys. Lett. 60, 1427–1429 (1992)

    Article  Google Scholar 

  13. Winful, H.G.: Pulse compression in optical fiber filters. Appl. Phys. Lett. 46, 527–529 (1985)

    Article  Google Scholar 

  14. LaRochelle, S., Hibino, Y., Mizrahi, V., Stegeman, G.I.: All-optical switching of grating transmission using cross-phase modulation in optical fibres. Electron. Lett. 26, 1459–1460 (1990)

    Article  Google Scholar 

  15. Chen, W., Mills, D.L.: Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 58, 160–163 (1987)

    Article  Google Scholar 

  16. Aceves, A.B., Wabnitz, S.: Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A 141, 37–42 (1989)

    Article  Google Scholar 

  17. Christodoulides, D.N., Joseph, R.I.: Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62, 1746–1749 (1989)

    Article  Google Scholar 

  18. Sipe, J.E., Winful, H.G.: Nonlinear Schrödinger solitons in a periodic structure. Opt. Lett. 13, 132–133 (1988)

    Article  Google Scholar 

  19. Mak, W.C.K., Malomed, B.A., Chu, P.L.: Formation of a standing-light pulse through collision of gap solitons. Phys. Rev. E 68, 026609 (2003)

    Article  Google Scholar 

  20. Neill, D.R., Atai, J.: Collision dynamics of gap solitons in Kerr media. Phys. Lett. A 353, 416–421 (2006)

    Article  Google Scholar 

  21. Eggleton, B.J., de Sterke, C.M., Slusher, R.E.: Nonlinear pulse propagation in Bragg gratings. J. Opt. Soc. Am. B 14, 2980–2993 (1997)

    Article  Google Scholar 

  22. Eggleton, B.J., Slusher, R.E., de Sterke, C.M., Krug, P.A., Sipe, J.E.: Bragg grating solitons. Phys. Rev. Lett. 76, 1627–1630 (1996)

    Article  Google Scholar 

  23. Taverner, D., Broderick, N.G.R., Richardson, D.J., Laming, R.I., Ibsen, M.: Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. Opt. Lett. 23, 328–330 (1998)

    Article  Google Scholar 

  24. de Sterke, C.M., Eggleton, B.J., Krug, P.A.: High-intensity pulse propagation in uniform gratings and grating superstructures. J. Lightwave Technol. 15, 1494–1502 (1997)

    Article  Google Scholar 

  25. Malomed, B.A., Tasgal, R.S.: Vibration modes of a gap soliton in a nonlinear optical medium. Phys. Rev. E 49, 5787–5796 (1994)

    Article  Google Scholar 

  26. Barashenkov, I.V., Pelinovsky, D.E., Zemlyanaya, E.V.: Vibrations and oscillatory instabilities of gap solitons. Phys. Rev. Lett. 80, 5117–5120 (1998)

    Article  Google Scholar 

  27. De Rossi, A., Conti, C., Trillo, S.: Stability, multistability, and wobbling of optical gap solitons. Phys. Rev. Lett. 81, 85–88 (1998)

    Article  Google Scholar 

  28. Mok, J.T., de Sterke, C.M., Littler, I.C.N., Eggleton, B.J.: Dispersionless slow light using gap solitons. Nat. Phys. 2, 775–780 (2006)

    Article  Google Scholar 

  29. Mak, W.C.K., Chu, P.L., Malomed, B.A.: Solitary waves in coupled nonlinear waveguides with Bragg gratings. J. Opt. Soc. Am. B 15, 1685–1692 (1998)

    Article  MathSciNet  Google Scholar 

  30. Tsofe, Y.J., Malomed, B.A.: Quasisymmetric and asymmetric gap solitons in linearly coupled Bragg gratings with a phase shift. Phys. Rev. E 75, 056603 (2007)

    Article  MathSciNet  Google Scholar 

  31. Atai, J., Malomed, B.A.: Bragg-grating solitons in a semilinear dual-core system. Phys. Rev. E 62, 8713–8718 (2000)

    Article  MathSciNet  Google Scholar 

  32. Atai, J., Malomed, B.A.: Solitary waves in systems with separated Bragg grating and nonlinearity. Phys. Rev. E 64, 066617 (2001)

    Article  Google Scholar 

  33. Baratali, B.H., Atai, J.: Gap solitons in dual-core Bragg gratings with dispersive reflectivity. J. Opt. 14, 065202 (2012)

    Article  Google Scholar 

  34. Mandelik, D., Morandotti, R., Aitchison, J.S., Silberberg, Y.: Gap solitons in waveguide arrays. Phys. Rev. Lett. 92, 093904 (2004)

    Article  Google Scholar 

  35. Tan, Y., Chen, F., Belicev, P.P., Stepic, M., Maluckov, A., Rüter, C.E., Kip, D.: Gap solitons in defocusing lithium niobate binary waveguide arrays fabricated by proton implantation and selective light illumination. Appl. Phys. B 95, 531–535 (2009)

    Article  Google Scholar 

  36. Dong, R., Rüter, C.E., Kip, D., Cuevas, J., Kevrekidis, P.G., Song, D.H., Xu, J.J.: Dark-bright gap solitons in coupled-mode one-dimensional saturable waveguide arrays. Phys. Rev. A 83, 063816 (2011)

    Article  Google Scholar 

  37. Atai, J., Malomed, B.A.: Gap solitons in Bragg gratings with dispersive reflectivity. Phys. Lett. A 342, 404–412 (2005)

    Article  MATH  Google Scholar 

  38. Neill, D.R., Atai, J., Malomed, B.A.: Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity. J. Opt. A 10, 085105 (2008)

    Article  Google Scholar 

  39. Chowdhury, S.A.M.S., Atai, J.: Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity. IEEE J. Quant. Electron. 50, 458–465 (2014)

    Article  Google Scholar 

  40. Xie, P., Zhang, Z.Q.: Multifrequency gap solitons in nonlinear photonic crystals. Phys. Rev. Lett. 91, 213904 (2003)

    Article  Google Scholar 

  41. Lin, Y., Chen, I., Lee, R.: Breather-like collision of gap solitons in Bragg gap regions within nonlocal nonlinear photonic crystals. J. Opt. A Pure Appl. Opt. 10, 044017 (2008)

    Article  Google Scholar 

  42. Skryabin, D.V.: Coupled core-surface solitons in photonic crystal fibers. Opt. Express 12, 4841–4846 (2004)

    Article  Google Scholar 

  43. Merhasin, I.M., Malomed, B.A.: Gap solitons in a model of a hollow optical fiber. Opt. Lett. 30, 1105–1107 (2005)

    Article  Google Scholar 

  44. Atai, J., Malomed, B.A., Merhasin, I.M.: Stability and collisions of gap solitons in a model of a hollow optical fiber. Opt. Commun. 265, 342–348 (2006)

    Article  Google Scholar 

  45. Neill, D.R., Atai, J.: Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A 367, 73–82 (2007)

    Article  Google Scholar 

  46. Gorbach, A.V., Malomed, B.A., Skryabin, D.V.: Gap polariton solitons. Phys. Lett. A 373, 3024–3027 (2009)

    Article  MATH  Google Scholar 

  47. Conti, C., Trillo, S., Assanto, G.: Doubly resonant Bragg simultons via second-harmonic generation. Phys. Rev. Lett. 78, 2341–2344 (1997)

    Article  Google Scholar 

  48. He, H., Drummond, P.D.: Ideal soliton environment using parametric band gaps. Phys. Rev. Lett. 78, 4311–4315 (1997)

    Article  Google Scholar 

  49. Mak, W.C.K., Malomed, B.A., Chu, P.L.: Three-wave gap solitons in waveguides with quadratic nonlinearity. Phys. Rev. E 58, 6708–6722 (1998)

    Article  Google Scholar 

  50. Atai, J., Malomed, B.A.: Spatial solitons in a medium composed of self-focusing and self-defocusing layers. Phys. Lett. A 298, 140–148 (2002)

    Article  Google Scholar 

  51. Atai, J., Malomed, B.A.: Families of Bragg-grating solitons in a cubic- quintic medium. Phys. Lett. A 284, 247–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Atai, J.: Interaction of Bragg grating solitons in a cubic- quintic medium. J. Opt. B Quantum Semiclass. Opt. 6, S177–S181 (2004)

    Article  Google Scholar 

  53. Dasanayaka, S., Atai, J.: Moving Bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys. Rev. E 88, 022921 (2013)

    Article  MATH  Google Scholar 

  54. Trillo, S., Wabnitz, S.: Nonlinear nonreciprocity in a coherent mismatched directional coupler. Appl. Phys. Lett. 49, 752–754 (1986)

    Article  Google Scholar 

  55. Atai, J., Chen, Y.: Nonlinear couplers composed of different nonlinear cores. J. Appl. Phys. 72, 24–27 (1992)

    Article  Google Scholar 

  56. Atai, J., Chen, Y.: Nonlinear mismatches between two cores of saturable nonlinear couplers. IEEE J. Quantum Electron. 29, 242–249 (1993)

    Article  Google Scholar 

  57. Fraga, W.B., Menezes, J.W.M., da Silva, M.G., Sobrinho, C.S., Sombra, A.S.B.: All optical logic gates based on an asymmetric nonlinear directional coupler. Opt. Commun. 262, 32–37 (2006)

    Article  Google Scholar 

  58. Nistazakis, H.E., Frantzeskakis, D.J., Atai, J., Malomed, B.A., Efremidis, N., Hizanidis, K.: Multichannel pulse dynamics in a stabilized Ginzburg-Landau system. Phys. Rev. E 65, 036605 (2002)

    Article  Google Scholar 

  59. Chen, Y., Atai, J.: Stability of fundamental solitons of coupled nonlinear Schrödinger equations. Opt. Commun. 150, 381–389 (1998)

    Article  Google Scholar 

  60. Kaup, D.J., Lakoba, T.I., Malomed, B.A.: Asymmetric solitons in mismatched dual-core optical fibers. J. Opt. Soc. Am. B 14, 1199–1206 (1997)

    Article  Google Scholar 

  61. Atai, J., Malomed, B.A.: Stability and interactions of solitons in asymmetric dual-core optical waveguides. Opt. Commun. 221, 55–62 (2003)

    Article  Google Scholar 

  62. Burlak, G., Malomed, B.A.: Stability boundary and collisions of two-dimensional solitons in PT- symmetric couplers with the cubic-quintic nonlinearity. Phys. Rev. E 88, 062904 (2013)

    Article  Google Scholar 

  63. Albuch, L., Malomed, B.A.: Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity. Math. Comput. Simul. 74, 312–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mak, W.C.K., Chu, P.L., Malomed, B.A.: Symmetric and asymmetric solitons in linearly coupled Bragg gratings. Phys. Rev. E 69, 066610 (2004)

    Article  Google Scholar 

  65. Islam, M.J., Atai, J.: Stability of gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity. Laser Phys. Lett. 12, 015401 (2015)

    Article  Google Scholar 

  66. Islam, M.J., Atai, J.: Interaction dynamics of gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity. IEEE J. Quantum Electron. 52, 6600108 (2016)

    Article  Google Scholar 

  67. Aslund, M., Poladian, L., Canning, J., de Sterke, C.M.: Add-drop multiplexing by dispersion inverted interference coupling. J. Lightwave Technol. 20, 1585–1589 (2002)

    Article  Google Scholar 

  68. Wang, L., Zhang, J., Chong, L., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    Article  MathSciNet  Google Scholar 

  69. Liu, W., Yu, C., Liu, M., Zhang, Y., Lei, M.: Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  70. Dai, C., Wang, Y.: Controllable combined Peregrine soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)

    Article  MathSciNet  Google Scholar 

  71. Liu, W., Yang, C., Liu, M., Yu, W., Zhang, Y., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E 96, 042201 (2017)

    Article  Google Scholar 

  72. Chen, Y., Atai, J.: Parametric spatial solitary waves. Opt. Lett. 19, 1287–1289 (1994)

    Article  Google Scholar 

  73. Liu, W., Pang, L., Yan, H., Lei, M.: Optical soliton shaping in dispersion decreasing fibers. Nonlinear Dyn. 84, 2205–2209 (2016)

    Article  MathSciNet  Google Scholar 

  74. Chen, Y., Atai, J.: Polarization instabilities in birefringent fibers: a comparison between continuous waves and solitons. Phys. Rev. E 52, 3102–3105 (1995)

    Article  Google Scholar 

  75. Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Li, D., Lu, Z., Zhao, L., Nie, Y.: Third- and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B 19, 369–375 (2002)

    Article  Google Scholar 

  76. Lawrence, B.L., Cha, M., Torruellas, W.E., Stegeman, G.I., Etemad, S., Baker, G., Kajzar, F.: Measurement of the complex nonlinear refractive-index of single-crystal P-toluene sulfonate at 1064-nm. Appl. Phys. Lett. 64, 2773–2775 (1994)

    Article  Google Scholar 

  77. Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J., Smektala, F., Sanchez, F.: Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses. Opt. Commun. 219, 427–433 (2003)

    Article  Google Scholar 

  78. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2013)

    MATH  Google Scholar 

  79. Chowdhury, S.A.M.S., Atai, J.: Moving Bragg grating solitons in a semilinear dual-core systems with dispersive reflectivity. Sci. Rep. 7, 4021 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Atai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.J., Atai, J. Stability of moving gap solitons in linearly coupled Bragg gratings with cubic–quintic nonlinearity. Nonlinear Dyn 91, 2725–2733 (2018). https://doi.org/10.1007/s11071-017-4042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4042-8

Keywords

Navigation