Skip to main content
Log in

Soliton-soliton dynamics in a dual-core system with separated nonlinearity and nonuniform Bragg grating

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The interactions between stable quiescent Bragg grating solitons are investigated systematically in a dual-core system where one core is uniform and has Kerr nonlinearity and other is linear and is equipped with a Bragg grating with dispersive reflectivity. In a previous work, it has been shown that the model supports stable quiescent Bragg solitons which may contain sidelobes in their profile in case of strong dispersive reflectivity. The interactions of in-phase solitons may lead to a variety of outcomes in the absence of sidelobes including merger into a quiescent soliton, destruction of both solitons, symmetric or asymmetric separation of solitons and generation of three solitons. In case of \(\pi \)-out-of-phase solitons without sidelobes, the solitons repel each other. However, in the presence of sidelobes, for both in-phase and \(\pi \)-out-of-phase solitons, the interactions may result in the repulsion of solitons or the formation of a long-lasting bound state that eventually disintegrates into two separating solitons. We have identified the regions for different interaction outcomes in the plane of dispersive reflectivity and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chao, R.Y., Garmire, E., Townes, C.H.: self-trapping of optical beams. Phys. Rev. Lett. 13, 479–481 (1967)

    Google Scholar 

  2. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Google Scholar 

  3. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Opt. 23, 171–172 (1973)

    Google Scholar 

  4. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Google Scholar 

  5. Chen, Y., Atai, J.: Parametric spatial solitary waves. Opt. Lett. 19, 1287–1289 (1994)

    Google Scholar 

  6. Chen, Y., Atai, J.: Polarization instabilities in birefringent fibers: a comparison between continuous waves and solitons. Phys. Rev. E 52(3), 3102–3105 (1995)

    Google Scholar 

  7. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  8. Kashyap, R.: Fiber Bragg Gratings. Academic Press, Boston (2010)

    Google Scholar 

  9. Krug, P.A., Stephens, T., Yoffe, G., Ouellette, F., Hill, P., Dhosi, G.: Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating. Electron. Lett. 31(13), 1091–1093 (1995)

    Google Scholar 

  10. Radic, S., George, N., Agrawal, G.P.: Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures. J. Opt. Soc. Am. B 12(4), 671–680 (1995)

    Google Scholar 

  11. Loh, W.H., Laming, R.I., Robinson, N., Cavaciuti, A., Vaninetti, F., Anderson, C.J., Zervas, M.N., Cole, M.J.: Dispersion compensation over distances in excess of 500 km for 10Gb/s systems using chirped fiber gratings. IEEE Photon. Technol. Lett. 8(7), 944–946 (1996)

    Google Scholar 

  12. Cao, H., Atai, J., Shu, X., Chen, G.: Direct design of high channel-count fiber Bragg grating filters with low index modulation. Opt. Express. 20, 12095–12110 (2012)

    Google Scholar 

  13. Cao, H., Shu, X., Atai, J., Gbadebo, A., Xiong, B., Fan, T., Tang, H., Yang, W., Yu, Y.: Optimally-designed single fiber Bragg grating filter scheme for RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion. Opt. Express. 22, 30442–30460 (2014)

    Google Scholar 

  14. Winful, H.G., Marburger, J.H., Garmire, E.: Theory of bistability in nonlinear distributed feedback structures. Appl. Phys. Lett. 75(5), 379–381 (1979)

    Google Scholar 

  15. Russell, P.: Bloch wave analysis of dispersion and pulse-propagation in pure distributed feedback structures. J. Mod. Opt. 38(8), 1599–1619 (1991)

    Google Scholar 

  16. de Sterke, C.M., Sipe, J.E.: Gap solitons. Prog. Opt. 33, 203–260 (1994)

    Google Scholar 

  17. Christodoulides, D.N., Joseph, R.I.: Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62(15), 1746–1749 (1989)

    Google Scholar 

  18. Aceves, A.B., Wabnitz, S.: Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A 141(1), 37–42 (1989)

    Google Scholar 

  19. Malomed, B.A., Tasgal, R.S.: Vibration modes of a gap soliton in a nonlinear optical medium. Phys. Rev. E 49(6), 5787–5796 (1994)

    Google Scholar 

  20. Barashenkov, I.V., Pelinovsky, D.E., Zemlyanaya, E.V.: Vibrations and oscillatory instabilities of gap solitons. Phys. Rev. Lett. 80(23), 5117–5120 (1998)

    Google Scholar 

  21. De Rossi, A., Conti, C., Trillo, S.: Stability, multistability, and wobbling of optical gap solitons. Phys. Rev. Lett. 81(1), 85–88 (1998)

    Google Scholar 

  22. Eggleton, B.J., Slusher, R.E., Krug, P.A., Sipe, J.E.: Bragg grating solitons. Phys. Rev. Lett. 76(10), 1627–1630 (1996)

    Google Scholar 

  23. de Sterke, C.M., Eggleton, B.J., Krug, P.A.: High-intensity pulse propagation in uniform gratings and grating superstructures. J. Lightwave Technol. 15(8), 1494–1502 (1997)

    Google Scholar 

  24. Eggleton, B.J., de Sterke, C.M., Slusher, R.E.: Bragg solitons in the nonlinear Schrödinger limit: experiment and theory. J. Opt. Soc. Am. B 16(4), 587–599 (1999)

    Google Scholar 

  25. Littler, I.C.M., Mok, J.T., Eggleton, B.J., de Sterke, C.M.: Dispersionless slow light using gap solitons. Nat. Phys. 2(11), 775–780 (2006)

    Google Scholar 

  26. Krauss, T.F.: Why do we need slow light? Nat. Photon. 2(8), 448–450 (2008)

    Google Scholar 

  27. Monat, C., de Sterke, C.M., Eggleton, B.J.: Slow light enhanced nonlinear optics in periodic structures. J. Opt. 12(10), 104003 (2010)

    Google Scholar 

  28. Xie, P., Zhang, Z.Q.: Multifrequency gap solitons in nonlinear photonic crystals. Phys. Rev. Lett. 91, 213904 (2003)

    Google Scholar 

  29. Lin, Y., Chen, I., Lee, R.: Breather-like collision of gap solitons in Bragg gap regions within nonlocal nonlinear photonic crystals. J. Opt. A Pure Appl. Opt. 10, 044017 (2008)

    Google Scholar 

  30. Atai, J., Malomed, B.A., Merhasin, I.M.: Stability and collisions of gap solitons in a model of a hollow optical fiber. Opt. Commun. 265, 342–348 (2006)

    Google Scholar 

  31. Neill, D.R., Atai, J.: Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A 367, 73–82 (2007)

    Google Scholar 

  32. Mak, W.C.K., Chu, P.L., Malomed, B.A.: Solitary waves in coupled nonlinear waveguides with Bragg gratings. J. Opt. Soc. Am. B 15, 1685–1692 (1998)

    MathSciNet  Google Scholar 

  33. Atai, J., Malomed, B.A.: Bragg-grating solitons in a semilinear dual-core system. Phys. Rev. E 62(6), 8713–8718 (2000)

    MathSciNet  Google Scholar 

  34. Atai, J., Malomed, B.A.: Solitary waves in systems with separated Bragg grating and nonlinearity. Phys. Rev. E 64(6Pt 2), 066617 (2001)

    Google Scholar 

  35. Atai, J., Malomed, B.A.: Gap solitons in Bragg gratings with dispersive reflectivity. Phys. Lett. A 342, 404–412 (2005)

    MATH  Google Scholar 

  36. Neill, D.R., Atai, J., Malomed, B.A.: Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity. J. Opt. A 10, 085105 (2008)

    Google Scholar 

  37. Baratali, B.H., Atai, J.: Gap solitons in dual-core Bragg gratings with dispersive reflectivity. J. Opt. 14, 065202 (2012)

    Google Scholar 

  38. Biswas, A., Vega-Guzman, J., Mahmood, M.F., Ekici, M., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Optical solitons in fiber Bragg gratings with dispersive reflectivity for parabolic law nonlinearity using undetermined coefficients. Optik 185, 39–44 (2019)

    Google Scholar 

  39. Biswas, A., Ekici, M., Sonmezoglu, A., Belic, M.R.: Optical solitons in fiber Bragg gratings with dispersive reflectivity for quadratic-cubic nonlinearity by extended trial function method. Optik 185, 50–56 (2019)

    Google Scholar 

  40. Mandelik, D., Morandotti, R., Aitchison, J.S., Silberberg, Y.: Gap solitons in waveguide arrays. Phys. Rev. Lett. 92(9), 093904 (2004)

    Google Scholar 

  41. Tan, Y., Chen, F., Beličev, P.P., Stepić, M., Maluckov, A., Rüter, C.E., Kip, D.: Gap solitons in defocusing lithium niobate binary waveguide arrays fabricated by proton implantation and selective light illumination. Appl. Phys. B 95(3), 531–535 (2009)

    Google Scholar 

  42. Conti, C., Trillo, S., Assanto, G.: Doubly resonant Bragg simultons via second- harmonic generation. Phys. Rev. Lett. 78(12), 2341–2344 (1997)

    Google Scholar 

  43. Atai, J., Malomed, B.A.: Families of Bragg-grating solitons in a cubic-quintic medium. Phys. Lett. A. 284(6), 247–252 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Dasanayaka, S., Atai, J.: Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium. Phys. Rev. E 84(2 Pt 2), 026613 (2011)

    MATH  Google Scholar 

  45. Dasanayaka, S., Atai, J.: Stability and collisions of moving Bragg grating solitons in a cubic-quintic nonlinear medium. J. Opt. Soc. Am. B 30(2), 396–404 (2013)

    MATH  Google Scholar 

  46. Romagnoli, M., Trillo, S., Wabnitz, S.: Soliton switching in nonlinear couplers. Opt. Quantum. Electron. 24(11), S1237–S1267 (1992)

    Google Scholar 

  47. Chu, P.L., Malomed, B.A., Peng, G.D.: Soliton switching and propagation in nonlinear fiber couplers: analytical results. J. Opt. Soc. Am. B 10(8), 1379 (1993)

    Google Scholar 

  48. Kivshar, Y.S.: Switching dynamics of solitons in fiber directional couplers. Opt. Lett. 18(1), 7–9 (1993)

    MathSciNet  Google Scholar 

  49. Chen, Y., Atai, J.: Stability of fundamental solitons of coupled nonlinear Schrödinger equations. Opt. Commun. 150, 381–389 (1998)

    Google Scholar 

  50. Trillo, S., Wabnitz, S.: Nonlinear nonreciprocity in a coherent mismatched directional coupler. Appl. Phys. Lett. 49, 752–754 (1986)

    Google Scholar 

  51. Atai, J., Chen, Y.: Nonlinear mismatches between two cores of saturable non- linear couplers. IEEE J. Quant. Electron. 29(1), 242–249 (1993)

    Google Scholar 

  52. Atai, J., Chen, Y.: Nonlinear couplers composed of different nonlinear cores. J. Appl. Phys. 72(1), 24–27 (1992)

    Google Scholar 

  53. Fraga, W.B., Menezes, J.W.M., da Silva, M.G., Sobrinho, C.S., Sombra, A.S.B.: All optical logic gates based on an asymmetric nonlinear directional coupler. Opt. Commun. 262, 32–37 (2006)

    Google Scholar 

  54. Shnaiderman, R., Tasgal, R.S., Band, Y.B.: Creating very slow optical gap solitons with a grating-assisted coupler. Opt. Lett. 36, 2438–2440 (2011)

    Google Scholar 

  55. Ahmed, T., Atai, J.: Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity. Phys. Rev. E 96, 032222 (2017)

    Google Scholar 

  56. Aitchison, J.S., Weiner, A.M., Silberberg, Y., Leaird, D.E., Oliver, M.K., Jackel, J.L., Smith, P.W.E.: Experimental observation of spatial soliton interactions. Opt. Lett. 16(1), 15–17 (1991)

    Google Scholar 

  57. Wabnitz, S., Kodama, Y., Aceves, A.B.: Control of optical soliton interactions. Opt. Fiber Technol. 1(3), 187–217 (1995)

    Google Scholar 

  58. Alfassi, B., Segev, M., Cohen, O., Rotschild, C.: Long-range interactions between optical solitons. Nat. Phys. 2(11), 769–774 (2006)

    Google Scholar 

  59. Taverner, D., Broderick, N.G.R., Richardson, D.J., Ibsen, M., Laming, R.I.: All- optical and gate based on coupled gap-soliton formation in a fiber Bragg grating. Opt. Lett. 23(4), 259–261 (1998)

    Google Scholar 

  60. Shapira, Y.P., Horowitz, M.: Optical and gate based on soliton interaction in a fiber Bragg grating. Opt. Lett. 32(10), 1211–1213 (2007)

    Google Scholar 

  61. Fu, S., Li, Y., Liu, Y., Zhou, J., Malomed, B.A.: Tunable storage of optical pulses in a tailored Bragg-grating structure. J. Opt. Soc. Am. B 32(4), 534–539 (2015)

    Google Scholar 

  62. Shapira, Y.P., Horowitz, M.: Two-soliton interaction in the vicinity of a defect inside a fiber Bragg grating and its application for obtaining an all-optical memory. Opt. Lett. 33(7), 675–677 (2008)

    Google Scholar 

  63. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Atai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Atai, J. Soliton-soliton dynamics in a dual-core system with separated nonlinearity and nonuniform Bragg grating. Nonlinear Dyn 97, 1515–1523 (2019). https://doi.org/10.1007/s11071-019-05069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05069-4

Keywords

Navigation