Skip to main content
Log in

Solar sail chaotic pitch dynamics and its control in Earth orbits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The attitude dynamics and control for solar sail orbiting a celestial body (e.g., the Earth) are critical for the space missions. In the paper, the pitch dynamics is addressed by considering the torques by the center-of-mass and center-of-pressure offset, the gravity gradient, the internal damping and the control vane. The chaotic pitch motion is analytically detected for the sailcraft in the circular and elliptical orbits with small eccentricities using the Melnikov’s method. The validity of the Melnikov method is numerically verified by checking the Poincare surface of section and the power spectral density. The stability criterion method with some improvements is utilized to stabilize the chaotic pitch motion onto the reference unstable periodic motion embedded in the chaotic attractor. The reference unstable periodic motion is obtained based on the calculation of the close return pairs. The small control input torques and the stabilization effects are presented, and the advantages of the modified stabilization method are clarified based on the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ceriotti, M., McInnes, C.R.: Generation of optimal trajectories for Earth hybrid pole-sitters. J. Guid. Control Dyn. 34(3), 847–859 (2011). doi:10.2514/1.50935

    Article  Google Scholar 

  2. Gong, S.P., Li, J.F., Baoyin, H.: Formation flying solar-sail gravity tractors in displaced orbit for towing near-Earth asteroids. Celest. Mech. Dyn. Astron. 105(1–3), 159–177 (2009). doi:10.1007/s10569-009-9211-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Baoyin, H., Mcinnes, C.R.: Solar sail halo orbits at the Sun–Earth artificial l1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006). doi:10.1007/s10569-005-4626-3

    Article  MATH  Google Scholar 

  4. Baoyin, H., Mcinnes, C.R.: Solar sail equilibria in the elliptical restricted three-body problem. J. Guid. Control Dyn. 29(3), 538–546 (2006). doi:10.2514/1.15596

    Article  Google Scholar 

  5. Baoyin, H., Mcinnes, C.R.: Solar sail orbits at artificial Sun–Earth libration points. J. Guid. Control Dyn. 28(6), 1328–1331 (2005). doi:10.2514/1.14598

    Article  Google Scholar 

  6. Gong, S., Li, J.: Solar Sail Spacecraft Dynamics and Control, pp. 2–19. Tsinghua University Press, Beijing (2015)

    Google Scholar 

  7. McInnes, C.R.: Solar Sailing. Technology Dynamics and Mission Applications, pp. 1–29. Springer, London (1999)

    Google Scholar 

  8. Wie, B.: Space Vehicle Dynamics and Control, pp. 741–899. AIAA Education Series, Reston (2008)

    Book  Google Scholar 

  9. Wie, B., Murphy, D.: Solar-sail attitude control design for a sail flight validation mission. J. Spacecr. Rock. 44(4), 809–821 (2007). doi:10.2514/1.22996

    Article  Google Scholar 

  10. Adeli, S.N., Lappas, V.J., Wie, B.: A scalable bus-based attitude control system for solar sails. Adv. Space Res. 48(11), 1836–1847 (2011). doi:10.1016/j.asr.2011.08.024

    Article  Google Scholar 

  11. Fu, B., Eke, F.O.: Attitude control methodology for large solar sails. J. Guid. Control Dyn. 38(4), 662–670 (2015). doi:10.2514/6.2013-4797

    Article  Google Scholar 

  12. Choi, M., Damaren, C.J.: Control allocation of solar sail tip vanes with two degrees of freedom. J. Guid. Control Dyn. 39(8), 1857–1865 (2016). doi:10.2514/6.2012-5002

    Article  Google Scholar 

  13. Kun, Z.: Control capability and allocation of solar sail tip vanes over bounded movement. J. Guid. Control Dyn. 38(7), 1340–1344 (2015). doi:10.2514/1.G000938

    Article  Google Scholar 

  14. Liu, J., Cui, N., Shen, F., Rong, S., Wen, X.: Dynamic modeling and analysis of a flexible sailcraft. Adv. Space Res. 56(4), 693–713 (2015). doi:10.1016/j.asr.2015.05.011

    Article  Google Scholar 

  15. Funase, R., Shirasawa, Y., et al.: On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Adv. Space Res. 48(11), 1740–1746 (2011). doi:10.1016/j.asr.2011.02.022

    Article  Google Scholar 

  16. Junshan, M., Gong, S., Li, J.: Coupled control of reflectivity modulated solar sail for geosail formation flying. J. Guid. Control Dyn. 38(4), 740–751 (2015). doi:10.2514/1.G000117

    Article  Google Scholar 

  17. Borggrafe, A., Heiligers, J., Ceriotti, M et al.: Attitude control of large gossamer spacecraft using surface reflectivity modulation,” IAC Paper 14. C3.4, 2014; also Proceedings of the 65th International Astronautical Congress, International Astronautical Federation (IAF), Toronto, Canada

  18. Gong, S., Li, J., Baoyin, H.: Analysis of displaced solar sail orbits with passive control. J. Guid. Control Dyn. 31(3), 782–785 (2008). doi:10.2514/1.32360

    Article  Google Scholar 

  19. Gong, S., Li, J., Baoyin, H.: Passive stability design for solar sail on displaced orbits. J. Spacecr. Rock. 44(5), 1071–1080 (2007). doi:10.2514/1.29752

    Article  Google Scholar 

  20. Gong, S., BaoYin, H., Li, J.: Coupled attitude-orbit dynamics and control for displaced solar orbits. Acta Astronaut. 44(5–6), 730–737 (2009). doi:10.1016/j.actaastro.2009.03.006

    Article  Google Scholar 

  21. Ceriotti, M., Harkness, P., McRobb, M.: Synchronized orbits and oscillations for free altitude control. J. Guid. Control Dyn. 37(6), 2062–2066 (2014). doi:10.2514/1.G000253

    Article  Google Scholar 

  22. Felicetti, L., Ceriotti, M., Harkness, P.: Attitude stability and altitude control of a variable-geometry Earth-orbiting solar sail. J. Guid. Control Dyn. 39(9), 2112–2126 (2016). doi:10.2514/1.G001833

    Article  Google Scholar 

  23. Yanzhu, L., Liqun, C.: Chaos in Attitude Dynamics of Spacecraft, pp. 33–61. Tsinghua University Press, Beijing (2013)

  24. Hughes, P.C.: Spacecraft Attitude Dynamics, pp. 233–248. Dover Books on Aeronautical Engineering, New York (2005)

    Google Scholar 

  25. Aslanov, V.S.: Chaos behavior of space debris during tethered tow. J. Guid. Control Dyn. 39(10), 2399–2405 (2016). doi:10.2514/1.G001460

    Article  MathSciNet  Google Scholar 

  26. Aslanov, V.S., Ledkov, A.S.: Dynamics of the Tethered Satellite Systems, pp. 263–325. Woodhead Publishing Ltd., Cambridge (2012)

    Book  Google Scholar 

  27. Yue, B.-Z.: Chaotic attitude maneuvers in spacecraft with a completely liquid-filled cavity. J. Sound Vib. 302, 643–656 (2007). doi:10.1016/j.jsv.2006.11.035

    Article  Google Scholar 

  28. Yue, B.-Z.: Heteroclinic bifurcations in completely liquid-filled spacecraft with flexible appendage. Nonlinear Dyn. 51, 317–327 (2008). doi:10.1007/s11071-007-9213-6

    MathSciNet  MATH  Google Scholar 

  29. Yue, B.-Z.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49(10), 2090–2099 (2011). doi:10.2514/1.J050144

    Article  MATH  Google Scholar 

  30. Chen, L.-Q., Liu, Y.-Z.: Chaotic attitude motion of a magnetic rigid spacecraft and its control. Int. J. Non-Linear Mech. 37(3), 493–504 (2002). doi:10.1007/BF02487455

    Article  MathSciNet  MATH  Google Scholar 

  31. Meehan, P.A., Asokanthan, S.F.: Chaotic motion in a spinning spacecraft with circumferential nutational damper. Nonlinear Dyn. 12, 69–87 (1997)

    Article  MATH  Google Scholar 

  32. Aslanov, V.S., Ledkov, A.S.: Chaotic oscillations of spacecraft with an elastic radially oriented tether. Cosm. Res. 50(2), 188–198 (2012). doi:10.1134/S0010952512020013

    Article  Google Scholar 

  33. Aslanov, V.S., Ledkov, A.S.: Chaotic motion of a reentry capsule during descent into the atmosphere. J. Guid. Control Dyn. 39(8), 1834–1843 (2016). doi:10.2514/1.G000411

    Article  Google Scholar 

  34. Shinbrot, T., et al.: Using small perturbations to control chaos. Nature 363(6428), 411–417 (1993). doi:10.1038/363411a0

    Article  Google Scholar 

  35. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990). doi:10.1103/PhysRevLett.64.1196

    Article  MathSciNet  MATH  Google Scholar 

  36. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992). doi:10.1016/0375-9601(92)90745-8

    Article  Google Scholar 

  37. Yu, H.J., Yan, Z.L., Jian, H.P.: Continuous control of chaos based on the stability criterion. Phys. Rev. E 69(6), 1–9 (2004). doi:10.1103/PhysRevE.69.066203

    Google Scholar 

  38. Hongjie, Y.: The Research of Control and Synchronization of Chaos in Neural Dynamics, Postdoctoral Research Report, pp. 23–37. Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai (2004)

    Google Scholar 

  39. Hong-Jie, Y.: Controlling chaos using time-delay nonlinear feedback. Acta Phys. Sin. 65(20), 5053–5057 (2004). doi:10.7498/aps.54.5053

    Google Scholar 

  40. Xu, X., Hu, H.Y., Wang, H.L.: Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control. Nonlinear Dyn. 49, 117–129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Meehan, P.A., Asokanthan, S.F.: Chaotic motion in a spinning spacecraft with circumferential nutational damper. Nonlinear Dyn. 17, 269–284 (1998)

    Article  MATH  Google Scholar 

  42. Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011). doi:10.1007/s11071-010-9800-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundations of China (Project Number: 11302134, 11272101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, L. & Cui, N. Solar sail chaotic pitch dynamics and its control in Earth orbits. Nonlinear Dyn 90, 1755–1770 (2017). https://doi.org/10.1007/s11071-017-3762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3762-0

Keywords

Navigation