Skip to main content
Log in

Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  2. Reddy, D.V.R., Sen, A., Johnston, G.L.: Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. Physica D 144, 335–357 2000

    Article  MATH  MathSciNet  Google Scholar 

  3. Lu, S.P., Ge, W.G.: Existence of positive periodic solutions for neutral population model with multiple delays. J. Comput. Appl. Math. 166, 371–383 2004

    Article  MATH  MathSciNet  Google Scholar 

  4. Shayer, L.P., Campbell, S.A.: Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. Soc. Ind. Appl. Math. 61, 673–700 2000

    Article  MATH  MathSciNet  Google Scholar 

  5. Hale, J.K.: Theory of Functional Differential Equations. Springer-Verlag, New York (1977)

    MATH  Google Scholar 

  6. Diekmann, O.: Delay Equations, Functional-, Complex-, and Nonlinear Analysis. Springer, New York (1995)

    MATH  Google Scholar 

  7. Stepan, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific and Technical, Essex (1989)

    MATH  Google Scholar 

  8. Kuang, Y.: Delay Differential Equations with Applications to Population Dynamics. Academic Press, New York (1993)

    Google Scholar 

  9. Qin, Y.X. et al.: Stability of Dynamic Systems with Delays. Science Press, Beijing (1989)

    Google Scholar 

  10. Campbell, S.A.: Stability and bifurcation of a simple neural network with multiple time delays. Fields Inst. Commun. 21, 65–79 1999

    Google Scholar 

  11. Sipahi, R., Olgac, N.: Complete stability robustness of third-order LTI multiple time-delay systems. Automatica 41, 1413–1422 2005

    Article  MATH  MathSciNet  Google Scholar 

  12. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 1992

    Article  Google Scholar 

  13. Hu, H.Y.: Using delayed state feedback to stabilize periodic motions of an oscillator. J. Sound Vibrat. 275, 1009–1025 2004

    Article  Google Scholar 

  14. Xu, J., Chung, K.W.: Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D 180, 17–39 2003

    Article  MATH  MathSciNet  Google Scholar 

  15. Liao, X.F., Chen, G.R.: Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays. Int. J. Bifurcat. Chaos 11, 2105–2121 2001

    Article  MATH  MathSciNet  Google Scholar 

  16. Moiola, J.L., Chiacchiarini, H.G., Ddeages, A.C.: Bifurcation and Hopf degeneracies in nonlinear feedback systems with the time-delay. Int. J. Bifurcat. Chaos 6, 661–672 1996

    Article  MATH  Google Scholar 

  17. Wei, J.J., Jiang, W.H.: Stability and bifurcation analysis in Van der Pol's oscillator with delayed feedback. J. Sound Vibrat. 283, 801–809 2005

    Article  MathSciNet  Google Scholar 

  18. Kakmeni, F.M.M., Bowong, S., Tchawoua, C. et al.: Chaos control and synchronization of a Phi(6)-van der Pol oscillator. Phys. Lett. A 322, 305–323 2004)

    Article  MathSciNet  Google Scholar 

  19. De Oliveira, J.C.F.: Oscillations in a van der Pol equation with delayed argument. J. Math. Anal. Appl. 275, 789–803 2002

    Article  MATH  MathSciNet  Google Scholar 

  20. Atay, F.M.: Van der Pol's oscillator under delayed feedback. J. Sound Vibrat. 218, 333–339 1998

    Article  MathSciNet  Google Scholar 

  21. Tian, Y.P., Yu, X.H., Chua, L.O.: Time-delayed impulsive control of chaotic hybrid systems. Int. J. Bifurcat. Chaos 14, 1091–1104 2004

    Article  MATH  MathSciNet  Google Scholar 

  22. Atay, F.M.: Delayed-feedback control of oscillations in nonlinear planar systems. Int. J. Control 75, 297–304 2002

    Article  MATH  MathSciNet  Google Scholar 

  23. Campbell, S.A., Belair, J., Ohira, T. et al.: Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback. Chaos 5, 640–645 1995

    Article  MATH  MathSciNet  Google Scholar 

  24. Minorsky, N.: Nonlinear Oscillations. D. Van Nostrand Company, Inc. Princeton, NJ (1962)

    MATH  Google Scholar 

  25. Yoshitake, Y., Inoue, J., Sueoka, A.: Vibration of a forced self-excited system with time delay. Trans. JSME Ser. C 49, 298–305 1984

    Google Scholar 

  26. Xu, J., Lu, Q.S.: Hopf bifurcation of time-delay lienard equations. Int. J. Bifurcat. Chaos 9, 939–951 1999

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, Z.H., Hu, H.Y.: An energy analysis of the local dynamics of a delayed oscillator near a hopf bifurcation. Nonlinear Dyn. 46, 149–159 (2006)

    Google Scholar 

  28. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 2002

    Article  MATH  MathSciNet  Google Scholar 

  29. Raghothama, A., Narayanan, S.: Periodic response and chaos in nonlinear systems with parametric excitation and time delay. Nonlinear Dyn. 27, 341–365 2003

    Article  MathSciNet  Google Scholar 

  30. Plaut, R.H., Hsieh, J.C.: Chaos in a mechanism with time delays under parametric and external excitation. J. Sound Vibrat. 114, 73–90 1987

    MathSciNet  Google Scholar 

  31. Rabotnov, Y.N.: Creep Problems in Structural Members. North-Holland Publishing Company-Amsterdam, London (1966)

    Google Scholar 

  32. Rabotnov, Y.N.: Elements of Hereditary Solid Mechanics. MIR Publishers, Moscow (1980)

    MATH  Google Scholar 

  33. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & Sons, New York (1979)

    MATH  Google Scholar 

  34. Stepan, G., Szabo, Z.: Impact induced internal fatigue cracks. In: Proceedings ASME DETC 17th Biennial Conference on Mechanical Vibration and Noise, Las Vegas, DETC99/VIB-8351, pp. 1–7 (1999)

  35. Rocard, Y.: General Dynamics of Vibrations. Crosby Lichwood & Son Ltd., London (1960)

    Google Scholar 

  36. Kalmar-Nagy, T., Stepan, G., Moon, F.C.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121–142 2001

    Article  MATH  MathSciNet  Google Scholar 

  37. Leine, R.I., van Campen, D.H., van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105–164 2000

    Article  MATH  Google Scholar 

  38. Stepan, G., Kalmar-Nagy, T.: Nonlinear regenerative machine tool vibration. In: Proceedings ASME DETC 17th Biennial Conference on Mechanical Vibration and Noise, Sacramento, DETC97/VIB-4021, pp. 1–11 (1997)

  39. Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 1982

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, Z.H., Hu, H.Y.: Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vibrat. 233, 215–233 2000

    Article  MathSciNet  Google Scholar 

  41. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  42. Ermentrout, B.: XPPAUT 3.0—The Differential Equations Tool. University of Pittsburgh, Pittsburgh 1997

    Google Scholar 

  43. Wahi, P., Chatterjee, A.: Regenerative tool chatter near a codimension 2 Hopf point using multiple scales. Nonlinear Dyn. 40, 323–338 2005

    Article  MATH  MathSciNet  Google Scholar 

  44. Stepan, G., Haller, G.: Quasiperiodic oscillations in robot dynamics. Nonlinear Dyn. 8, 513–528 1995

    MathSciNet  Google Scholar 

  45. Wang, H.L., Hu, H.Y., Wang, Z.H.: Global dynamics of a Duffing oscillator with delayed displacement feedback. Int. J. Bifurcat. Chaos 14, 2753–2775 2004

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Hu, H.Y. & Wang, H.L. Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control. Nonlinear Dyn 49, 117–129 (2007). https://doi.org/10.1007/s11071-006-9117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9117-x

Keywords

Navigation