Skip to main content
Log in

An infinite 2-D lattice of strange attractors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Periodic trigonometric functions are introduced in 2-D offset-boostable chaotic flows to generate an infinite 2-D lattice of strange attractors. These 2-D offset-boostable chaotic systems are constructed based on standard jerk flows and extended to more general systems by exhaustive computer searching. Two regimes of multistability with a lattice of strange attractors are explored where the infinitely many attractors come from a 2-D offset-boostable chaotic system in cascade or in an interactive mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bao, B., Li, Q., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)

    Article  MathSciNet  Google Scholar 

  2. Xu, Q., Lin, Y., Bao, B., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fract. 83, 186–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lai, Q., Chen, S.: Research on a new 3D autonomous chaotic system with coexisting attractors. Optik 127, 3000–3004 (2016)

    Article  Google Scholar 

  4. Lai, Q., Chen, S.: Generating multiple chaotic attractors from Sprott B system. Int. J. Bifurc. Chaos 26, 1650177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sprott, J.C.: Simplest chaotic flows with involutional symmetries. Int. J. Bifurc. Chaos 24, 1450009 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, C., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurc. Chaos 24, 1450131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sprott, J.C.: A dynamical system with a strange attractor and invariant tori. Phys. Lett. A 378, 1361–1363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224, 1493–1506 (2015)

    Article  Google Scholar 

  9. Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the Rössler equations: bifurcations of limit cycles and chaotic attractors. Phys. D 238, 1087–1100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sprott, J.C., Wang, X., Chen, G.: Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23, 1350093 (2013)

    Article  MathSciNet  Google Scholar 

  11. Li, C., Sprott, J.C., Xing, H.: Hypogenetic chaotic jerk flows. Phys. Lett. A 380, 1172–1177 (2016)

    Article  MathSciNet  Google Scholar 

  12. Li, C., Sprott, J.C., Xing, H.: Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2017)

    Article  Google Scholar 

  13. Li, C., Sprott, J.C.: Variable-boostable chaotic flows. Optik 127, 10389–10398 (2016)

    Article  Google Scholar 

  14. Foss, J., Longtin, A., Mensour, B., Milton, J.: Multistability and delayed recurrent loops. Phys. Rev. Lett. 76, 708 (1996)

    Article  Google Scholar 

  15. Zeng, Z., Huang, T., Zheng, W.: Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–1377 (2010)

    Article  Google Scholar 

  16. Zeng, Z., Zheng, W.: Multistability of neural networks with time-varying delays and concave–convex characteristics. IEEE Trans. Neural Netw. Learn. Syst. 23, 293–305 (2012)

    Article  Google Scholar 

  17. Komarov, A., Leblond, H., Sanchez, F.: Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys. Rev. A 71, 053809 (2005)

    Article  Google Scholar 

  18. Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. 101, 1822–1827 (2003)

    Article  Google Scholar 

  19. Ujjwal, S.R., Punetha, N., Ramaswamy, R., Agrawal, M., Prasad, A.: Driving-induced multistability in coupled chaotic oscillators: symmetries and riddled basins. Chaos 26, 063111 (2016)

    Article  MathSciNet  Google Scholar 

  20. Hens, C.R., Banerjee, R., Feudel, U., Dana, S.K.: How to obtain extreme multistability in coupled dynamical systems. Phys. Rev. E 85, 035202R (2012)

    Article  Google Scholar 

  21. Sprott, J.C., Li, C.: Comment on “How to obtain extreme multistability in coupled dynamical systems”. Phys. Rev. E 89, 066901 (2014)

    Article  Google Scholar 

  22. Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K., Feudel, U., Showalter, K., Ngonghala, C.N., Amritkar, R.E.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89, 022918 (2014)

    Article  Google Scholar 

  23. Bao, B., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)

    Article  Google Scholar 

  24. Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wei, Z., Zhang, W.: Hidden hyperchaotic attractors in a modified Lorenz–Tenfold system with only one stable equilibrium. Int. J. Bifurc. Chaos 24, 1450127 (2014)

    Article  MATH  Google Scholar 

  27. Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24, 1450034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Multistability: uncovering hidden attractors. Eur. Phys. J. Spec. Top. 224, 1405–1408 (2015)

    Article  Google Scholar 

  29. Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224, 1469–1476 (2015)

    Article  Google Scholar 

  30. Pham, V.T., Jafari, S., Wang, X., Ma, J.: A chaotic system with different shapes of equilibria. Int. J. Bifurc. Chaos 26, 1650069 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, H., Liu, Y., Wei, Z., Zhang, L.: Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn. 85, 2719–2727 (2016)

    Article  MathSciNet  Google Scholar 

  32. Sprott, J.C.: Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific, Singapore (2010) QA614.82 S67 2010, ISBN 978-981-283-881-0

  33. Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kengne, J., Njitacke, Z.T., Nguomkam Negou, A., Fouodji Tsostop, M., Fotsin, H.B.: Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int. J. Bifurc. Chaos 26, 1650081 (2016)

    Article  MATH  Google Scholar 

  35. Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

    Article  Google Scholar 

  36. Vaidyanathan, S., Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., Pham, V.T.: Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J. Eng. Sci. Technol. Rev. 8, 24–36 (2015)

    Google Scholar 

  37. Sprott, J.C.: Some simple chaotic jerk functions. Am. J. Phys. 65, 537–543 (1997)

    Article  Google Scholar 

  38. Malasoma, J.-M.: What is the simplest dissipative chaotic jerk equation which is parity invariant? Phys. Lett. A 264, 383–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thomas, R.: Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, ‘labyrinth chaos’. Int. J. Bifurc. Chaos 9, 1889–1905 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sprott, J.C., Chlouverakis, K.E.: Labyrinth chaos. Int. J. Bifurc. Chaos 17, 2097–2108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chlouverakis, K.E., Sprott, J.C.: Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos. Chaos 17, 023110 (2007)

    Article  MATH  Google Scholar 

  42. Nosé, S.: Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991)

    Article  MathSciNet  Google Scholar 

  43. Hoover, W.G.: Remark on ‘Some simple chaotic flows’. Phys. Rev. E 51, 759–760 (1995)

    Article  Google Scholar 

  44. Gottlieb, H.P.W.: Question 38. What is the simplest jerk function that gives chaos? Am. J. Phys. 64, 525 (1996)

    Article  Google Scholar 

  45. Li, C., Pehlivan, I., Sprott, J.C.: Amplitude-phase control of a novel chaotic attractor. Turk. J. Electr. Eng. Comput. Sci. 24, 1–11 (2016)

    Article  Google Scholar 

  46. Li, C., Sprott, J.C.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73, 1335–1341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, C., Sprott, J.C., Thio, W., Zhu, H.: A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 61, 977–981 (2014)

    Article  Google Scholar 

  48. Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25, 1530025 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, Z., Xu, D.: A secure communication scheme using projective chaos synchronization. Chaos Solitons Fract. 22, 477–481 (2004)

    Article  MATH  Google Scholar 

  50. Lu, J., Wu, X., Lü, J.: Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305, 365–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, G., Chen, D., Lin, J., Chen, X.: The application of chaotic oscillators to weak signal detection. IEEE Trans. Ind. Electron. 46, 440–444 (1999)

    Article  Google Scholar 

  52. Wang, G., He, S.: A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 945–953 (2003)

    Article  MathSciNet  Google Scholar 

  53. Wang, C., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys. Sin. 65, 240501 (2016)

    Google Scholar 

  54. Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–2315 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Dr. Akif for the help with circuit simulation. This work was supported financially by the Startup Foundation for Introducing Talent of NUIST (Grant No. 2016205), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 16KJB120004), Open Fund of Jiangsu Key Laboratory of Meteorological Observation and Information Processing (KDXS1401) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbiao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Sprott, J.C. & Mei, Y. An infinite 2-D lattice of strange attractors. Nonlinear Dyn 89, 2629–2639 (2017). https://doi.org/10.1007/s11071-017-3612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3612-0

Keywords

Navigation