Skip to main content
Log in

Constructing chaotic systems with conditional symmetry

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Asymmetric dynamical systems sometimes admit a symmetric pair of coexisting attractors for reasons that are not readily apparent. This phenomenon is called conditional symmetry and deserves further explanation and exploration. In this paper, a general method for constructing such systems is proposed in which the asymmetric system restores its original equation when some of the variables are subjected to a symmetric coordinate transformation combined with a special offset boosting. Two regimes of this conditional symmetry are illustrated in chaotic flows where a symmetric pair of attractors resides in asymmetric basins of attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arecchi, F.T., Meucci, R., Puccioni, G., Tredicce, J.: Experimental evidence of subharmonic bifurcations, multistability and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217 (1982)

    Article  Google Scholar 

  2. Foss, J., Longtin, A., Mensour, B., Milton, J.: Multistability and delayed recurrent loops. Phys. Rev. Lett. 76, 708 (1996)

    Article  Google Scholar 

  3. Joshi, A., Xiao, M.: Optical multistability in three-level atoms inside an optical ring cavity. Phys. Rev. Lett. 91, 143904 (2003)

    Article  Google Scholar 

  4. Ozbudak, E.M., Thattai, M., Lim, H.N., Shraiman, B.I., Oudenaarden, A.V.: Multistability in the lactose utilization network of escherichia coli. Nature 427, 737–740 (2004)

    Article  Google Scholar 

  5. Komarov, A., Leblond, H., Sanchez, F.: Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys. Rev. A 71, 053809 (2005)

    Article  Google Scholar 

  6. Thomson, M., Gunawardena, J.: Unlimited multistability in multisite phosphorylation systems. Nature 460, 274–277 (2009)

    Article  Google Scholar 

  7. Laurent, M., Kellershohn, N.: Multistability: a major means of differentiation and evolution in biological systems. Trends biochem sci 24, 418–422 (1999)

    Article  Google Scholar 

  8. Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Pnas. 101, 1822–1827 (2003)

    Article  Google Scholar 

  9. Zeng, Z., Huang, T., Zheng, W.: Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–1377 (2010)

    Article  Google Scholar 

  10. Zeng, Z., Zheng, W.: Multistability of neural networks with time-varying delays and concave–convex characteristics. IEEE Trans. Neural Netw. Learn. Syst. 23, 293–305 (2012)

    Article  Google Scholar 

  11. Robinson, A., Calov, R., Ganopolski, A.: Multistability and critical thresholds of the Greenland ice sheet. Nature Clim. 2, 429–432 (2012)

    Article  Google Scholar 

  12. Ying, L., Huang, D., Lai, Y.C.: Multistability, chaos, and random signal generation in semiconductor superlattices. Phys. Rev. E 93, 062204 (2016)

    Article  Google Scholar 

  13. Dafilis, M.P., Frascoli, F., Cadusch, P.J., Liley, D.T.J.: Chaos and generalised multistability in a mesoscopic model of the electroencephalogram. Physica D 238, 1056–1060 (2009)

    Article  MATH  Google Scholar 

  14. Ujjwal, S.R., Punetha, N., Ramaswamy, R., Agrawal, M., Prasad, A.: Driving-induced multistability in coupled chaotic oscillators: symmetries and riddled basins. Chaos 26, 063111 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hens, C.R., Banerjee, R., Feudel, U., Dana, S.K.: How to obtain extreme multistability in coupled dynamical systems. Phys. Rev. E 85, 035202R (2012)

    Article  Google Scholar 

  16. Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K., Feudel, U., Showalter, K., Ngonghala, C.N., Amritkar, R.E.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89, 022918 (2014)

    Article  Google Scholar 

  17. Bao, B., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)

    Article  Google Scholar 

  18. Sprott, J.C.: Simplest chaotic flows with involutional symmetries. Int. J. Bifurcat. Chaos. 24, 1450009 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sprott, J.C.: Strange attractors with various equilibrium types. Eur. Phys. J. Special Topics. 224, 1409–1419 (2015)

    Article  Google Scholar 

  20. Bao, B., Li, Q., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)

    Article  MathSciNet  Google Scholar 

  21. Xu, Q., Lin, Y., Bao, B., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Soliton Fract. 83, 186–200 (2016)

    Article  MathSciNet  Google Scholar 

  22. Li, C., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurcat. Chaos. 24, 1450131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224, 1493–1506 (2015)

    Article  Google Scholar 

  24. Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurcat. Chaos. 25, 1530025 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C., Sprott, J.C., Thio, W.: Linearization of the Lorenz system. Phys. Lett. A 379, 888–893 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lai, Q., Chen, S.: Research on a new 3D autonomous chaotic system with coexisting attractors. Optik 127, 3000–3004 (2016)

    Article  Google Scholar 

  27. Lai, Q., Chen, S.: Coexisting attractors generated from a new 4D smooth chaotic system. Int. J. Control Autom. 14, 1124–1131 (2016)

    Article  Google Scholar 

  28. Lai, Q., Chen, S.: Generating multiple chaotic attractors from Sprott B system. Int. J. Bifurcat. Chaos. 26, 1650177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2988-6

    Google Scholar 

  30. Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the Rössler equations: bifurcations of limit cycles and chaotic attractors. Physica D 238, 1087–1100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sprott, J.C., Wang, X., Chen, G.: Coexistence of point, periodic and strange attractors. Int. J. Bifurcat. Chaos. 23, 1350093 (2013)

    Article  MathSciNet  Google Scholar 

  32. Sprott, J.C.: A dynamical system with a strange attractor and invariant tori. Phys. Lett. A 378, 1361–1363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, C., Sprott, J.C., Xing, H.: Hypogenetic chaotic Jerk flows. Phys. Lett. A 380, 1172–1177 (2016)

    Article  MathSciNet  Google Scholar 

  34. Li, C., Sprott, J.C.: Variable-boostable chaotic flows. Optik 127, 10389–10398 (2016)

    Article  Google Scholar 

  35. Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224, 1469–1476 (2015)

    Article  Google Scholar 

  37. Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simulat. 100, 13–23 (2014)

    Article  MathSciNet  Google Scholar 

  38. Kapitaniak, T., Leonov, G.A.: Multistability: uncovering hidden attractors. Eur. Phys. J. Spec. Top. 224, 1405–1408 (2015)

    Article  Google Scholar 

  39. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonovc, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  Google Scholar 

  40. Jiang, H., Liu, Y., Wei, Z., Zhang, L.: Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2857-3

    MathSciNet  Google Scholar 

Download references

Acknowledgments

C. Li wishes to thank J. Zha for helpful discussion. This work was supported financially by the Startup Foundation for Introducing Talent of NUIST (Grant No.: 2016205), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No.:16KJB120004), the National Natural Science Foundation of China (Grant No.: 61072133), the Advantage Discipline “Information and Communication Engineering” of Jiangsu Province and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbiao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Sprott, J.C. & Xing, H. Constructing chaotic systems with conditional symmetry. Nonlinear Dyn 87, 1351–1358 (2017). https://doi.org/10.1007/s11071-016-3118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3118-1

Keywords

Navigation