Skip to main content
Log in

Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the tracking approach of a self-generated stable limit cycle for an underactuated mechanical system: The inertia wheel inverted pendulum (IWIP). Such system is subject to unilateral constraints limiting its swing motion. It is known that an interconnection and damping assignment passivity-based control (IDA-PBC) can be employed to control such pendulum to its upright position. In this work, we briefly show first that the IWIP can generate a stable period-1 limit cycle through a Hopf bifurcation by varying some gain parameter of the IDA-PBC. Thus, such self-generated limit cycle is used as a reference trajectory, which is chosen to be tracked by the IWIP. To achieve the tracking problem, a supplementary control input is added. Such tracking problem is reformulated as an asymptotic stabilization of the tracking error. Our fundamental approach hinges mainly on the use of the S-procedure to introduce the unilateral constraints, and the Schur complement and the matrix inversion lemma to transform bilinear matrix inequalities into linear matrix inequalities. Several simulations have been presented to corroborate the mathematical results and to show the efficiency of the proposed tracking scheme of the self-generated stable limit cycle of the controlled IWIP, even if it is subject to external disturbances, or in the presence of uncertainties in the friction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. di Bernardo, M., Johansson, K.H., Vasca, F.: Self-oscillations and sliding in relay feedback systems: symmetry and bifurcations. Int. J. Bifurc. Chaos 11(04), 1121–1140 (2001)

    Article  Google Scholar 

  2. Jenkins, A.: Self-oscillation. Phys. Rep. 525(2), 167–222 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chatterjee, S.: Self-excited oscillation under nonlinear feedback with time-delay. J. Sound Vib. 330(9), 1860–1876 (2011)

    Article  Google Scholar 

  4. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 1st edn. Applied Mathematical Sciences, Springer, New York (1983)

    Book  MATH  Google Scholar 

  5. Sun, J., Luo, A.C.: Bifurcation and Chaos in Complex Nonlinear Dynamical Systems, Advances in Nonlinear Science and Complexity (Physics). Elsevier, Amsterdam (2006)

    Google Scholar 

  6. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. Studies in Nonlinearity, Westview Press, Colorado (2014)

    MATH  Google Scholar 

  7. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems, 1st edn. Textbooks in Mathematical Sciences, Springer, New York (1996)

    MATH  Google Scholar 

  8. Malas, A., Chatterjee, S.: Generating self-excited oscillation in a class of mechanical systems by relay-feedback. Nonlinear Dyn. 76(2), 1253–1269 (2014)

    Article  MathSciNet  Google Scholar 

  9. Malas, A., Chatterjee, S.: Analysis and synthesis of modal and non-modal self-excited oscillations in a class of mechanical systems with nonlinear velocity feedback. J. Sound Vib. 334, 296–318 (2015)

    Article  Google Scholar 

  10. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd Edn, Vol. 2 of Texts in Applied Mathematics, Springer, New York (2003)

  11. Spong, M.W.: Underactuated mechanical systems. In: Siciliano, B., Valavanis, K.P. (eds.), Control Problems in Robotics and Automation, Vol. 230 of Lecture Notes in Control and Information Sciences, Springer, Berlin, Heidelberg, pp. 135–150 (1998)

  12. Liu, Y., Yu, H.: A survey of underactuated mechanical systems. IET Control Theory Appl. 7(7), 921–935 (2013)

    Article  MathSciNet  Google Scholar 

  13. Choukchou-Braham, A., Cherki, B., Djemai, M., Busawon, K.: Analysis and Control of Underactuated Mechanical Systems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  14. Huang, A.-C., Chen, Y.-F., Kai, C.-Y.: Adaptive Control of Underactuated Mechanical Systems. World Scientific Publishing Co, Singapore (2015)

    Book  Google Scholar 

  15. Fantoni, I., Lozano, R.: Nonlinear Control for Underactuated Mechanical Systems. Springer, London (2002)

    Book  MATH  Google Scholar 

  16. Rudra, S., Barai, R.K., Maitra, M.: Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems, 1st edn. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

  17. Moreno-Valenzuela, J., Aguilar-Avelar, C., Puga-Guzmán, S., Santibánez, V.: Two adaptive control strategies for trajectory tracking of the inertia wheel pendulum: neural networks vis à vis model regressor. Intell. Autom. Soft Comput. (2016). doi:10.1080/10798587.2015.1121618

  18. Li, Z., Zhang, Y.: Robust adaptive motion/force control for wheeled inverted pendulums. Automatica 46(8), 1346–1353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Spong, M.W., Corke, P., Lozano, R.: Nonlinear control of the reaction wheel pendulum. Automatica 37, 1845–1851 (2001)

    Article  MATH  Google Scholar 

  20. Block, D.J., Astrom, K.J., Spong, M.W.: The Reaction Wheel Pendulum, 1st Edition, Synthesis Lectures on Control and Mechatronics. Morgan & Claypool, San Rafael (2007)

    Google Scholar 

  21. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, Ph.D. thesis, Massachusetts Institute of Technology, Department Electrical Engineering and Computer Science (2001)

  22. Olfati-Saber, R.: Global stabilization of a flat underactuated system: the inertia wheel pendulum. In: Proceedings of the CDC01-REG1152 (2001)

  23. Ramamoorthy, S., Kuipers, B.: Qualitative heterogeneous control of higher order systems, pp. 417–434. Computation and Control, Hybrid Systems (2003)

  24. Santibanez, V., Kelly, R., Sandoval, J.: Control of the inertia wheel pendulum by bounded torques, In: Proceedings of the European Control Conference and 44th IEEE Conference on Decision and Control, pp. 8266–8270 (2005)

  25. Ortega, R., Spong, M., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ortega, R., Garcia-Canseco, E.: Interconnection and damping assignment passivity-based control: A survey. Eur. J. Control 10, 432–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ortega, R., van der Schaft, A., Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems. Automatica 38(4), 585–596 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gómez-Estern, F., Van der Schaft, A.J.: Physical damping in IDA-PBC controlled underactuated systems. Eur. J. Control 10(5), 451–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Aguilar-Ibañez, C., Gutiérrez-Frias, O.O., Suarez-Castanon, M.S.: Controlling the strongly damping inertia wheel pendulum via nested saturation function. Computación y Sistemas 12(4), 436–449 (2009)

    Google Scholar 

  30. Qaiser, N., Iqbal, N., Hussain, A., Qaiser, N.: Exponential stabilization of the inertia wheel pendulum using dynamic surface control. J. Circuits Syst. Comput. 16(01), 81–92 (2007)

    Article  Google Scholar 

  31. Touati, N.: A. Chemori, Predictive control for the stabilization of a fast mechatronic system : from simulation to real-time experiments, In: Proceedings of the International IFAC Symposium on Mechatronic Systems, pp. 237–242 (2013)

  32. Olivares, M., Albertos, P.: On the linear control of underactuated systems: the flywheel inverted pendulum. In: Proceedings of the 10th IEEE International Conference on Control and Automation, pp. 27–32 (2013)

  33. Olivares, M., Albertos, P.: Linear control of the flywheel inverted pendulum. ISA Trans. 53(5), 1396–1403 (2014)

    Article  Google Scholar 

  34. Khraief, N. H., Chemori, A., Belghith, S.: External disturbance rejection in IDA-PBC controller for underactuated mechanical systems: From theory to real time experiments. In: Proceedings of the IEEE Conference on Control Applications, pp. 1747–1752 (2014)

  35. Khraief, N. H., Chemori, A., Pena, J. J., Belghith, S.: Stabilization of inertia wheel inverted pendulum by model reference adaptive IDA-PBC: from simulation to real-time experiments. In: Proceedings of the 3rd International Conference on Control, Engineering Information Technology (CEIT), pp. 1–6 (2015)

  36. Ryalat, M., Laila, D.S.: A simplified IDA-PBC design for underactuated mechanical systems with applications. Eur. J. Control 27, 1–16 (2016)

    Article  MathSciNet  Google Scholar 

  37. Guo, Z.-Q., Xu, J.-X., Lee, T.H.: Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum. J. Frankl. Inst. 351, 2261–2282 (2014)

    Article  MathSciNet  Google Scholar 

  38. Mobayen, S.: Design of LMI-based sliding mode controller with an exponential policy for a class of underactuated systems. Complexity 1–8 (2014)

  39. Yue, M., Sun, X., Li, N., An, C.: Dynamic motion planning and adaptive tracking control for a class of two-wheeled autonomous vehicle with an underactuated pendular suspension. J. Dyn. Syst. Meas. Contr. 137(10), DS–15–1019 (2015)

  40. Zhang, A., Yang, C., Gong, S., Qiu, J.: Nonlinear stabilizing control of underactuated inertia wheel pendulum based on coordinate transformation and time-reverse strategy. Nonlinear Dyn. 84(4), 2467–2476 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Aguilar, L.T., Boiko, I., Fridman, L., Iriarte, R.: Generating self-excited oscillations via two-relay controller. IEEE Trans. Autom. Control 54(2), 416–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Aguilar, L.T., Boiko, I., Fridman, L., Iriarte, R.: Generating self-excited oscillations for underactuated mechanical systems via two-relay controller. Int. J. Control 82(9), 1678–1691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Aguilar, L.T., Boiko, I., Fridman, L., Freidovich, L.: Generating oscillations in inertia wheel pendulum via two relay controller. Int. J. Robust Nonlinear Control 22, 318–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Iriarte, R., Aguilar, L.T., Fridman, L.: Second order sliding mode tracking controller for inertia wheel pendulum. J. Frank. Inst. 350, 92–106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Aguilar, L.T., Boiko, I., Fridman, L., Iriarte, R.: Self-Oscillations in Dynamic Systems: A New Methodology via Two-Relay Controllers, 1st edn. Springer, Birkhauser, Basel (2015)

    Book  MATH  Google Scholar 

  46. Estrada, A., Aguilar, L.T., Iriarte, R., Fridman, L.: Two relay controller for real time trajectory generation and its application to inverted orbital stabilization of inertia wheel pendulum via quasi-continuous HOSM. Asian J. Control 14(1), 58–66 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Freidovich, L.B., Hera, P.X.L., Mettin, U., Robertsson, A., Shiriaev, A.S., Johansson, R.: Shaping stable periodic motions of inertia wheel pendulum: theory and experiment. Asian J.f Control 11(5)

  48. Shiriaev, A.S., Perram, J.W., de Wit, C.C.: Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach. IEEE Trans. Autom. Control 50, 1164–1176 (2005)

  49. Shiriaev, A., Perram, J., Robertsson, A., Sandberg, A.: Periodic motion planning for virtually constrained Euler-Lagrange systems. Syst. Control Lett. 55, 900–907 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shiriaev, A.S., Freidovich, L.B., Manchester, I.R.: Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems. Annu. Rev. Control 32(2), 200–211 (2008)

    Article  Google Scholar 

  51. Gruber, C., Hofbaur, M.: Periodic motion control of the reaction wheel pendulum. In: 13th Mechatronic Forum, pp. 1–8 (2012)

  52. Andary, S., Chemori, A., Krut, S.: Stable limit cycle generation for underactuated mechanical systems, application: inertia wheel inverted pendulum. In: Proceedings of the IEEE/RSJ International Conference on Intelligent RObots and Systems, pp. 526–531 (2008)

  53. Andary, S., Chemori, A., Krut, S.: Control of the underactuated inertia wheel inverted pendulum for stable limit cycle generation. Adv. Robot. 23(15), 1999–2014 (2009)

    Article  Google Scholar 

  54. Andary, S., Chemori, A., Krut, S.: Estimation-based disturbance rejection in control for limit cycle generation on inertia wheel inverted pendulum testbed. In: Proceedings of the IEEE/RSJ International Conference on Intelligent RObots and Systems, pp. 1302–1307 (2009)

  55. Zayane-Aissa, C., Laleg-Kirati, T.-M., Chemori, A.: Control of a perturbed under-actuated mechanical system. In: Proceedings of the IEEE Multi-Conference on Systems and Control, pp. 294–299 (2015)

  56. Anez, C.A.-I., Martinez, J.C., de Jesus Rubio, J., Suarez-Castanon, M.S.: Inducing sustained oscillations in feedback-linearizable single-input nonlinear systems. ISA Trans. 54, 117–124 (2015)

  57. Alonso, D.M., Paolini, E.E., Moiola, J.L.: Global bifurcation analysis of a controlled underactuated mechanical system. Nonlinear Dyn. 40(3), 205–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Alonso, D.M., Paolini, E.E., Moiola, J.L.: Controlling an inverted pendulum with bounded controls. In: Colonius, F., Grüne, L. (eds.) Dynamics, Bifurcations, and Control. Lecture Notes in Control and Information Sciences, vol. 273, pp. 3–16. Springer, Berlin, Heidelberg (2002)

    Chapter  Google Scholar 

  59. Pagano, D., Pizarro, L., Aracil, J.: Local bifurcation analysis in the Furuta pendulum via normal forms. Int. J. Bifurc. Chaos 10(5), 981–995 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nikolov, S., Nedev, V.: Bifurcation analysis and dynamic behaviour of an inverted pendulum with bounded control. J. Theor. Appl. Mech. 64(1), 17–32 (2016)

    MathSciNet  Google Scholar 

  61. Boyd, S., El-Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory, 1st Edition, Vol. 15 of Studies in Applied and Numerical Mathematics, SIAM, Philadelphia, (1994)

  62. Petersen, I.R., Tempo, R.: Robust control of uncertain systems: classical results and recent developments. Automatica 50(5), 1315–1335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Oliveira, R.C.L.F., de Oliveira, M.C., Peres, P.L.D.: Robust state feedback LMI methods for continuous-time linear systems: Discussions, extensions and numerical comparisons, in. IEEE International Symposium on Computer-Aided Control System Design (CACSD) 2011, 1038–1043 (2011)

  64. Rodrigues, L.A., Oliveira, R.C. L.F., Camino, J.F.: New extended LMI characterization for state feedback control of continuous-time uncertain linear systems. In: Control Conference (ECC), 2015 European, pp. 1992–1997 (2015)

  65. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts, Wiley Series in Nonlinear Science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

    Google Scholar 

  66. Huang, A.-C., Chen, Y.-C.: Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12(5), 770–775 (2004)

    Article  Google Scholar 

  67. Hosseinpour, M., Nikdel, P., Badamchizadeh, M., Akbari, M.: Modelling and control of flexible joint robot based on Takagi-Sugeno fuzzy approach and its stability analysis via sum of squares. Math. Comput. Model. Dyn. Syst. 19(3), 250–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Merat, K., Salarieh, H., Alasty, A., Meghdari, A.: Stochastic piecewise affine control with application to pitch control of helicopter. Nonlinear Anal. Hybrid Syst. 15, 86–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Razavi, H., Merat, K., Salarieh, H., Alasty, A., Meghdari, A.: Observer based minimum variance control of uncertain piecewise affine systems subject to additive noise. Nonlinear Anal. Hybrid Syst. 19, 153–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Luo, R.C., Sheng, J., Chen, C.C., Chang, P.H., Lin, C.I.: Biped robot push and recovery using flywheel model based walking perturbation counteraction. In: 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 50–55 (2013)

  71. Luo, R.C., Huang, C.W.: A push-recovery method for walking biped robot based on 3-D flywheel model. In: 41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015, pp. 2685–2690 (2015)

  72. Shafiee-Ashtiani, M., Yousefi-Koma, A., Panahi, M.S., Khadiv, M.: Push recovery of a humanoid robot based on model predictive control and capture point, CoRR abs/1612.08034. arXiv:1612.08034

  73. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207 (2006)

  74. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.-H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis/CRC, London (2007)

    Book  Google Scholar 

  75. de Brito Novaes, C. E., da Silva, P. S. P., Rouchon, P.: Trajectory control of a bipedal walking robot with inertial disc. In: IFAC Proceedings Volumes 47 (3) (2014) pp. 4843–4848, 19th IFAC World Congress

  76. de Brito Novaes, C.E., da Silva, P.S.P.: Numerical estimation of stability region of self-clocked bipedal robots with inertial disk. J. Control Autom. Electr. Syst. 27(6), 634–645 (2016)

    Article  Google Scholar 

  77. Fard, B.M., Bagheri, A., Nariman-Zadeh, N.: Limit cycle walker push recovery based on a receding horizon control scheme. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 226(7), 914–926 (2012)

    Google Scholar 

  78. Zhu, Y., Gao, Y., Xu, C., Zhao, J., Jin, H., Lee, J.: Adaptive control of a gyroscopically stabilized pendulum and its application to a single-wheel pendulum robot. IEEE/ASME Trans. Mechatron. 20(5), 2095–2106 (2015)

    Article  Google Scholar 

  79. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control, 1st edn. Wiley, New York (1989)

    Google Scholar 

  80. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  81. Scherer, C., Weiland, S.: Linear Matrix Inequalities in Control. Dutch Institute of Systems and Control (DISC), Delft (2005)

  82. Asheghan, M.M., Beheshti, M.T.: An LMI approach to robust synchronization of a class of chaotic systems with gain variations. Chaos Solitons Fractals 42(2), 1106–1111 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. Mobayen, S.: An LMI-based robust controller design using global nonlinear sliding surfaces and application to chaotic systems. Nonlinear Dyn. 79(2), 1075–1084 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  84. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  85. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  86. VanAntwerp, J.G., Braatz, R.D.: A tutorial on linear and bilinear matrix inequalities. J. Process Control 10(4), 363–385 (2000)

    Article  Google Scholar 

  87. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI control toolbox. For Use with MATLAB, MathWorks, Natick (1995)

    Google Scholar 

  88. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based control: emergence of bifurcations and chaos. Commun. Nonlinear Sci. Numer. Simul. 47, 308–327 (2017)

    Article  MathSciNet  Google Scholar 

  89. Gritli, H., Belghith, S., Khraeif, N.: OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

    Article  MATH  Google Scholar 

  90. Gritli, H., Belghith, S.: Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach. Nonlinear Dyn. 83(4), 1955–1973 (2016)

    Article  MathSciNet  Google Scholar 

  91. Wang, Z., Zhou, L., Chen, Z., Wang, J.: Local bifurcation analysis and topological horseshoe of a 4D hyper-chaotic system. Nonlinear Dyn. 83(4), 2055–2066 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zhou, L., Chen, Z., Wang, Z., Wang, J.: On the analysis of local bifurcation and topological horseshoe of a new 4D hyper-chaotic system. Chaos Solitons Fractals 91, 148–156 (2016)

    Article  MathSciNet  Google Scholar 

  93. Wu, W., Chen, Z.: Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system. Nonlinear Dyn. 60(4), 615–630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  94. Li, X., Wang, P.: Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system. Nonlinear Dyn. 73(1), 621–632 (2013)

    MathSciNet  MATH  Google Scholar 

  95. Algaba, A., Domínguez-Moreno, M.C., Merino, M., Rodríguez-Luis, A.J.: Study of the Hopf bifurcation in the Lorenz. Chen and Lü Syst. Nonlinear Dyn. 79(2), 885–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  96. Deng, K., Yu, S.: Hopf bifurcation analysis of a new modified hyperchaotic Lü system. Optik Int. J. Light Electron Opt. 124(23), 6265–6269 (2013)

    Article  Google Scholar 

  97. Govaerts, W.: Numerical bifurcation analysis for ODEs. J. Comput. Appl. Math. 125(1–2), 57–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  98. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassène Gritli.

Appendices

Appendix 1: Self-generation of a limit cycle through Hopf bifurcation

In this Appendix, we show generation of a self-sustained oscillation (limit cycle) in the nonlinear dynamics of the underactuated IWIP under the IDA-PBC. Thus, we present first stability conditions of the equilibrium point \(\varvec{x}_{eq}\), given by expression (9), of the nonlinear dynamics (8). Moreover, we derive conditions proving existence of the Hopf bifurcation and hence the periodic solutions in the nonlinear dynamics (8). Finally, we discuss briefly stability of the periodic solutions using the fist Lyapunov value [4]. This quantity is calculated numerically in this paper. Its mathematical description will be developed and presented in another new paper. It is worth to note that analysis of 3D or 4D nonlinear dynamics has been widely investigated, as in [91,92,93,94,95,96], just to mention a few.

1.1 Appendix 1.1: Stability of the equilibrium point

We look for determining conditions on the control gains \(k_i\) \((i=1,2,3,4)\) for which the equilibrium point is stable and hence the Hopf bifurcation occurs.

For simplicity, posing \(a=\frac{1}{I}\), \(b=bg\) and \(c=\frac{1}{I_{2}}\). Then, the characteristic equation of the Jacobian matrix (10) is defined as:

$$\begin{aligned} {\mathcal {P}}\left( \lambda \right)= & {} \lambda ^{4} + \left( k_{3}-k_{4}\right) \lambda ^{3} \nonumber \\&+ \left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) \lambda ^{2} + abk_{4}\lambda \nonumber \\&+\, abck_{2}=0 \end{aligned}$$
(74)

In order to study the stability conditions of the equilibrium point \(\varvec{x}_{eq}\), we apply Routh-Hurwitz criterion, which states that all real eigenvalues and all real parts of complex conjugate eigenvalues of the characteristic polynomial \({\mathcal {P}}\left( \lambda \right) \) are negative if and only if the following conditions hold:

$$\begin{aligned} \begin{array}{ccccccc} \left( \text {i}\right) \ a_{1}>0,&\,&\left( \text {ii}\right) \ a_{3}>0,&\,&\left( \text {iii}\right) \ a_{4}>0&\text {and}&\left( \text {iv}\right) \ a_{1}a_{2}a_{3}>a_{3}^{2}+a_{1}^{2}a_{4} \end{array} \end{aligned}$$
(75)

with \(a_{i}\) (\(i=1,2,3,4\)), are defined such that:

$$\begin{aligned} \begin{array}{ccccccc} {\mathcal {P}}\left( \lambda \right) =\lambda ^{4} + a_{1}\lambda ^{3} + a_{2}\lambda ^{2} +a_{3}\lambda + a_{4}=0 \end{array} \end{aligned}$$
(76)

Applying Routh-Hurwitz criterion (75) to the characteristic polynomial (74), and as \(k_{i}>0\) for \(i=1,2,3,4\), we find that necessary and sufficient conditions for the equilibrium point \(\varvec{x}_{eq}\) to be asymptotically stable are:

$$\begin{aligned} {{\mathcal {C}}}_{1}= & {} k_{3}-k_{4}>0 \end{aligned}$$
(77a)
$$\begin{aligned} {{\mathcal {C}}}_{2}= & {} a\left( \gamma -b+k_{1}\right) \nonumber \\&-\,ck_{2}-ab\frac{k_{4}}{k_{3}-k_{4}}-ck_{2}\frac{k_{3}-k_{4}}{k_{4}}>0 \end{aligned}$$
(77b)

1.2 Appendix 1.2: Existence of Hopf bifurcation and periodic solutions

In this part, we will investigate existence of the Hopf bifurcation [4] at the equilibrium point regarding \(k_{4}\) as the bifurcation parameter. Assume that (74) has a pure imaginary root \(\lambda =\text {i} w\), \(w\in {\mathbb {R}}^{+}\). Substituting it into (74) yields

$$\begin{aligned}&w^{4} - \left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) w^{2} + abck_{2} \nonumber \\&\quad +\, \text {i}w\left( -\left( k_{3}-k_{4}\right) w^{2}+abk_{4}\right) =0 \end{aligned}$$
(78)

It then follows that:

$$\begin{aligned}&w^{4} - \left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) w^{2} + abck_{2} = 0 \end{aligned}$$
(79a)
$$\begin{aligned}&\left( k_{4}-k_{3}\right) w^{2}+abk_{4} = 0 \end{aligned}$$
(79b)

From relation (79b), we obtain the following expression:

$$\begin{aligned} k_{4} = \frac{w^{2}}{ab+w^{2}}k_{3} \end{aligned}$$
(80)

We stress that w is the solution of (79a) and it depends only on the two parameters \(k_{1}\) and \(k_{2}\). Moreover, according to expression (80), \(k_{4}\) is proportional to \(k_{3}\) and it depends on w. Then, by fixing the value of the parameters \(k_{1}\), \(k_{2}\) and \(k_{3}\), we can calculate the value of the gain \(k_{4}\) at which the Hopf bifurcation occurs.

By solving relation (79a), it is easy to show that there are two solutions \(w_{1}^{c}\) and \(w_{2}^{c}\) defined as follows:

$$\begin{aligned}&w_{1}^{c} = \sqrt{\frac{a\left( \gamma -b+k_{1}\right) -ck_{2} - \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}}{2}} \end{aligned}$$
(81a)
$$\begin{aligned}&w_{2}^{c} = \sqrt{\frac{a\left( \gamma -b+k_{1}\right) -ck_{2} + \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}}{2}} \end{aligned}$$
(81b)

In (81), we have \(w_{1}^{c}<w_{2}^{c}\). Actually, these two solutions, \(w_{1}^{c}\) and \(w_{2}^{c}\), exist if and only if the following three conditions hold:

$$\begin{aligned}&\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}>0 \end{aligned}$$
(82a)
$$\begin{aligned}&a\left( \gamma -b+k_{1}\right) -ck_{2}\nonumber \\&- \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}>0 \end{aligned}$$
(82b)
$$\begin{aligned}&a\left( \gamma -b+k_{1}\right) -ck_{2} \nonumber \\&+\, \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}>0 \end{aligned}$$
(82c)

As \(k_{1}>0\) and \(k_{2}>0\), then according to conditions (82b) and (82c), it follows that: \(a\left( \gamma -b+k_{1}\right) -ck_{2}>0\). Therefore, relying on (82a), it easy to show that:

$$\begin{aligned} k_{1}>b-\gamma +\frac{c}{a}k_{2} + 2\sqrt{\frac{bc}{a}}\sqrt{k_{2}} \end{aligned}$$
(83)

This expression represents the condition on \(k_{1}\) with respect to \(k_{2}\) for the existence of the Hopf bifurcation. In addition, we emphasize that the system (8) exhibits two Hopf bifurcations at two different critical values \(k_{4,1}^{c}\) and \(k_{4,2}^{c}\) that are associated to \(w_{1}^{c}\) and \(w_{2}^{c}\), respectively. These two critical parameters \(k_{4,1}^{c}\) and \(k_{4,2}^{c}\) are defined like so:

$$\begin{aligned}&k_{4,1}^{c} = k_{3}\frac{a\left( \gamma -b+k_{1}\right) -ck_{2}- \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}}{a\left( \gamma +b+k_{1}\right) -ck_{2} - \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}} \end{aligned}$$
(84a)
$$\begin{aligned}&k_{4,2}^{c} = k_{3}\frac{a\left( \gamma -b+k_{1}\right) -ck_{2} + \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}}{a\left( \gamma +b+k_{1}\right) -ck_{2} + \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}} \end{aligned}$$
(84b)

For example, for \(k_{1}=1.036692\), \(k_{2}=0.0011\) and \(k_{3}=38.4\), the two critical values of \(k_{4}\) at which the Hopf bifurcation occurs are calculated to be about: \(k_{4,1}^{c}=0.87159917\) and \(k_{4,2}^{c}=27.19772529\). Moreover, we have: \(w_{1}^{c}=1.04160466\) and \(w_{2}^{c}=10.64970853\).

It is worth noting that for \(k_{4}=k_{4,i}^{c}\), \((i=1,2)\), the relation \({{\mathcal {C}}}_{2}=0\) in (77b) takes place, for which the stability of the equilibrium is violated. Moreover, if the condition (83) is not satisfied, the two Hopf bifurcations disappear. In fact, there are two cases. The two Hopf bifurcations collide with each other and are replaced by only one Hopf bifurcation if the following condition is met:

$$\begin{aligned} k_{1} = b-\gamma +\frac{c}{a}k_{2} + 2\sqrt{\frac{bc}{a}}\sqrt{k_{2}} \end{aligned}$$
(85)

Hence, for such expression (90), we will obtain: \(w_{1}^{c}=w_{2}^{c}=w_{\star }^{c}=\sqrt{\sqrt{abc}\sqrt{k_{2}}}\), and then:

$$\begin{aligned} k_{4,\star }^{c} = k_{3}\frac{\sqrt{ck_{2}}}{\sqrt{ab}+\sqrt{ck_{2}}} \end{aligned}$$
(86)

Moreover, if \(k_{1} < b-\gamma +\frac{c}{a}k_{2} + 2\sqrt{\frac{bc}{a}}\sqrt{k_{2}}\), then no Hopf bifurcation exits.

Now, we aim at developing the analytical expression of the transversality condition for the occurrence of the Hopf bifurcation. From (74), it follows that:

$$\begin{aligned} \frac{d\lambda \left( k_{4}\right) }{dk_{4}}=\frac{\text {i}w\left( w^{2}+ab\right) }{abk_{4}-3\left( k_{3}-k_{4}\right) w^{2}+2\text {i}w\left( a\left( \gamma -b+k_{1}\right) -ck_{2}-2w^{2}\right) } \end{aligned}$$
(87)

Thus, we obtain:

$$\begin{aligned} \text {Re}\left( \frac{d\lambda \left( k_{4}\right) }{dk_{4}}\right) =\frac{2w^{2}\left( w^{2}+ab\right) \left( a\left( \gamma -b+k_{1}\right) -ck_{2}-2w^{2}\right) }{\left( abk_{4}-3\left( k_{3}-k_{4}\right) w^{2}\right) ^{2}+4w^{2}\left( a\left( \gamma -b+k_{1}\right) -ck_{2}-2w^{2}\right) ^{2}} \end{aligned}$$
(88)

It is clear that the sign of the condition (88) depends on the quantity \(\vartheta = a\left( \gamma -b+k_{1}\right) -ck_{2}-2w^{2}\). Using expressions of \(w_{1}^{c}\) and \(w_{2}^{c}\), it follows that: \(\vartheta = \sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}\) for \(w=w_{1}^{c}\), and \(\vartheta = -\sqrt{\left( a\left( \gamma -b+k_{1}\right) -ck_{2}\right) ^{2}-4abck_{2}}\) for \(w=w_{2}^{c}\). Furthermore, based on condition (83), we obtain \(\vartheta \ne 0\) for the two cases. Therefore,

$$\begin{aligned} \text {Re}\left( \frac{d\lambda \left( k_{4}\right) }{dk_{4}}\left| _{_{k_{4}=k_{4,i}^{c},w=w_{i}^{c}}}\right. \right) \ne 0 \end{aligned}$$
(89)

Accordingly, the second condition for the existence of a Hopf bifurcation [4] is also met. In addition, we have:

$$\begin{aligned}&\text {Re}\left( \frac{d\lambda \left( k_{4}\right) }{dk_{4}}\left| _{_{k_{4}=k_{4,1}^{c},w=w_{1}^{c}}}\right. \right) > 0 \end{aligned}$$
(90a)
$$\begin{aligned}&\text {Re}\left( \frac{d\lambda \left( k_{4}\right) }{dk_{4}}\left| _{_{k_{4}=k_{4,2}^{c},w=w_{2}^{c}}}\right. \right) < 0 \end{aligned}$$
(90b)

Hence, according to condition (90a) the equilibrium point is stable when \(k_{4}>k_{4,1}^{c}\) and periodic solutions exist when \(k_{4}<k_{4,1}^{c}\). Furthermore, according to condition (90b) the equilibrium point is stable when \(k_{4}<k_{4,2}^{c}\) and periodic solutions exist when \(k_{4}>k_{4,2}^{c}\). Furthermore, the period \(T_{i}\) of oscillations around the bifurcation point \(k_{4,i}^{c}\) is defined as follows:

$$\begin{aligned} T_{i} = \frac{2\pi }{w_{i}^{c}} \end{aligned}$$
(91)

1.3 Appendix 1.3: Stability of the periodic solutions

In order to characterize the stability of the periodic solutions generated through each Hopf bifurcation, the so-called fist Lyapunov value (coefficient) [4], say \(\ell _{1}\), must be computed and analyzed for the system (8). In the bifurcation points, a positive first Lyapunov value represents a subcritical bifurcation and predicts that the system presents unstable periodic oscillations, which can fold back and coexist with the stable equilibrium point. In contrast, a negative value for \(\ell _{1}\) indicates a supercritical bifurcation and stable self-oscillations emerge from the bifurcation point.

Analytical calculation of the fist Lyapunov coefficient \(\ell _{1}\) can be achieved, but it is very long. It can be calculated according to the formula given in [97]. For the sake of brevity, we omit this calculation in this paper. In fact, this analysis on stability of the periodic oscillations and bifurcation through the first Lyapunov value and the center manifold theory will be developed with further details in another work. Then, in this study we will perform a numerical computation of \(\ell _{1}\) using the well-known MATCONT package [97, 98]. Alonso et al. [57, 58] used the AUTO package to the numerical continuation of limit cycles and the stability index for the underactuated IWP.

Thus, using MATCONT package, the fist Lyapunov coefficient \(\ell _{1}\) is computed to be: \(\ell _{1,1}=3.121836\times 10^{-9}\) at \(k_{4,1}^{c}=0.87159917\), whereas \(\ell _{1,2}=-1.081602\times 10^{-5}\) at \(k_{4,2}^{c}=27.19772529\). Therefore, as \(\ell _{1,1}>0\) then the periodic solution emanating from the first Hopf bifurcation at \(k_{4,1}^{c}\) is unstable, and which arises at the side where the equilibrium is stable. However, because \(\ell _{1,2}<0\) hence the generated sustained oscillation at the parameter \(k_{4,2}^{c}\) is stable. Moreover, this stable periodic oscillation arises at the side where the equilibrium is unstable. Relying on relation (91), the period of the stable self-sustained oscillation (stable limit cycle) around the critical parameter \(k_{4,2}^{c}\) is: \(T_{2}=0.5899866\,[s]\).

Appendix 2: Equivalent BMI (29b) for a IWIP with uncertain friction parameters and an external disturbance

Using the reference dynamics (16) and the uncertain disturbed nonlinear dynamics (17), we obtain the following tracking error dynamics:

$$\begin{aligned} \dot{\varvec{e}}=\varvec{ J}\varvec{e}+\varvec{ D}\left( f\left( x_{1}\right) -f\left( x_{1}^{r}\right) \right) + \varvec{ B}v + \varvec{\tilde{ J}}\varvec{x} + \varvec{\tilde{D}}\zeta \nonumber \\ \end{aligned}$$
(92)

By substituting the tracking control law (20) in (92), system (92) will be simplified as follows:

$$\begin{aligned} \dot{\bar{\varvec{e}}}=\varvec{ A}\varvec{\bar{e}}+\varvec{\bar{ D}}\left( f\left( x_{1}\right) -f\left( x_{1}^{r}\right) \right) + \varvec{\bar{ B}}w + \varvec{\tilde{ A}}\varvec{x} + \varvec{ D}_{5}\zeta \nonumber \\ \end{aligned}$$
(93)

with \(\varvec{\tilde{ A}}=\left[ \begin{array}{ccc} 0 &{} 0 &{} 0\\ 0 &{} -\frac{\delta _{1}+\delta _{2}}{I} &{} \frac{\delta _{2}}{I_2}\\ 0 &{} \frac{\delta _{2}}{I} &{} -\frac{\delta _{2}}{I_2} \end{array} \right] \) and \(\varvec{ D}_{5}=\left[ \begin{array}{c} 0 \\ 1\\ 0 \end{array} \right] \).

Moreover, the term \(\varvec{\tilde{ A}}\varvec{x}\) in (93) can be rewritten like so: \(\varvec{\tilde{ A}}\varvec{x} = \delta _{1}\varvec{ D}_{2}x_{3}+\delta _{2}\varvec{ D}_{3}x_{3}+\delta _{2}\varvec{ D}_{4}x_{4}\), with \(\varvec{ D}_{2}= \frac{1}{I}\left[ \begin{array}{c} 0 \\ -1\\ 0 \end{array} \right] \), \(\varvec{ D}_{3}= \frac{1}{I}\left[ \begin{array}{c} 0 \\ -1\\ 1 \end{array} \right] \), \(\varvec{ D}_{4}= \frac{1}{I_{2}}\left[ \begin{array}{c} 0 \\ 1\\ -1 \end{array} \right] \).

In addition, if we consider that:

  • the two uncertain friction parameters \(\delta _{1}\) and \(\delta _{2}\) are norm-bounded, i.e., \(\delta _{1}\le \bar{\delta }_{1}\) and \(\delta _{2}\le \bar{\delta }_{2}\),

  • the two states \(x_{3}\) and \(x_{4}\) are bounded such that \(\left| x_{3}\right| <\bar{x}_{3}\) and \(\left| x_{4}\right| <\bar{x}_{4}\), for some constants \(\bar{x}_{3}>0\) and \(\bar{x}_{4}>0\),

  • the disturbance \(\zeta \) is bounded such that \(\left| \zeta \right| <\rho \), with \(\rho >0\).

then, according to Sect. 4.2 and relying on the Young relation, we obtain the following conditions:

$$\begin{aligned}&2\bar{\varvec{e}}^\mathrm{T}\varvec{ P}\varvec{\tilde{ A}}\varvec{x} \le \bar{\varvec{e}}^\mathrm{T}\varvec{ P}\left( \varvec{ M}_{2}+\varvec{ M}_{3}+\varvec{ M}_{4}\right) \varvec{ P}\bar{\varvec{e}} \nonumber \\&\quad + \left( \bar{\delta }_{1}\bar{x}_{3}\right) ^{2}\varvec{ D}_{2}^\mathrm{T}\varvec{ M}_{2}^{-1}\varvec{ D}_{2} + \left( \bar{\delta }_{2}\bar{x}_{3}\right) ^{2}\varvec{ D}_{3}^\mathrm{T}\varvec{ M}_{3}^{-1}\varvec{ D}_{3} \nonumber \\&\quad + \left( \bar{\delta }_{2}\bar{x}_{4}\right) ^{2}\varvec{ D}_{4}^\mathrm{T}\varvec{ M}_{4}^{-1}\varvec{ D}_{4} \end{aligned}$$
(94a)
$$\begin{aligned}&2\bar{\varvec{e}}^\mathrm{T}\varvec{ P}\varvec{ D}_{5}\zeta \le \bar{\varvec{e}}^\mathrm{T}\varvec{ P}\varvec{ M}_{5}\varvec{ P}\bar{\varvec{e}} + \rho ^{2}\varvec{ D}_{5}^\mathrm{T}\varvec{ M}_{5}^{-1}\varvec{ D}_{5} \end{aligned}$$
(94b)

with \(\varvec{ M}_{i}=\varvec{ M}_{i}^\mathrm{T}>0\), \(i=2,\ldots ,5\).

Let us pose \(\varvec{ J}=\left[ \begin{array}{c} \varvec{{\mathcal {I}}} \\ \varvec{{\mathcal {I}}}\\ \varvec{{\mathcal {I}}}\\ \varvec{{\mathcal {I}}}\\ \varvec{{\mathcal {I}}} \end{array} \right] \), \(\varvec{ M}=\text {diag}\left( \varvec{ M}_{1},\varvec{ M}_{2},\varvec{ M}_{3},\varvec{ M}_{4},\varvec{ M}_{5}\right) \), and \(\varvec{ D}=\left[ \begin{array}{c} \gamma \varvec{\bar{ D}} \\ \bar{\delta }_{1}\bar{x}_{3}\varvec{ D}_{2} \\ \bar{\delta }_{2}\bar{x}_{3}\varvec{ D}_{3} \\ \bar{\delta }_{2}\bar{x}_{4}\varvec{ D}_{4} \\ \rho \varvec{ D}_{5} \end{array} \right] \). Thus, based on results in Sect. 4.2, the BMI (29b) will be replaced by the following one:

$$\begin{aligned} \left[ \begin{array}{cc} \varvec{ P}\varvec{ A}+\varvec{ P}\varvec{\bar{ B}}\varvec{ K} + \left( \star \right) + \varvec{ P}\varvec{ J}^\mathrm{T}\varvec{ M}\varvec{ J}\varvec{ P} +\eta _{3}\varvec{ {\mathcal {I}}}&{} -\left( \eta _{1}-\eta _{2}\right) \varvec{ C}\\ \left( \star \right) &{} \varvec{ D}^\mathrm{T}\varvec{ M}^{-1}\varvec{ D} - \epsilon \eta _{3}+4\sigma \left( \eta _{1}+\eta _{2}\right) \end{array} \right] <0 \end{aligned}$$
(95)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritli, H., Khraief, N., Chemori, A. et al. Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC. Nonlinear Dyn 89, 2195–2226 (2017). https://doi.org/10.1007/s11071-017-3578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3578-y

Keywords

Navigation