Skip to main content
Log in

Generating self-excited oscillation in a class of mechanical systems by relay-feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, a few research efforts are made to utilize artificially generated self-excited vibration in several mechanical and micromechanical applications. The present paper considers some important theoretical aspects in connection with the efficacy of the relay-feedback in generating and controlling self-excited oscillation in a class of mechanical systems. The force applied by the relay-feedback is essentially constant and acts in the direction of the measured quantity. Mathematically, an ideal relay-feedback is represented by the signum function of the measured variable. Detailed theoretical analyses, both analytic and numerical, are presented for single, two, and three degrees-of-freedom spring–mass–damper systems under relay-feedback with underactuated, collocated, and noncollocated control configurations. It is shown that relay-feedback, if used in a suitable way, can be effective in selectively generating a particular mode of oscillation in a multi degrees-of-freedom mechanical system. It is also possible to change the mode of oscillation and its amplitude by suitably selecting the control gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kurita, Y., Muragishi, Y., Yasuda, H.: Self-excited driving of resonance-type vibratory machine by vibration quantity feedback. Trans. Jpn. Soc. Mech. Eng. Ser. C 62, 1691–1696 (1996)

    Article  Google Scholar 

  2. Kurita, Y., Matsumura, Y., Tanaka, A., Hatano, T.: Vibration transportation by cooperation of decentralized self-excited vibratory machines. Trans. Jpn. Soc. Mech. Eng. Ser. C 69, 1191–1196 (2003)

    Article  Google Scholar 

  3. Batako, A.D., Babitsky, V.I., Halliwell, N.A.: A self-excited system of percussive-rotary drilling. J Sound Vib. 259(1), 97–118 (2003)

    Article  Google Scholar 

  4. Babitsky, V.I., Kalashnikov, A.N., Molodtsov, F.V.: Autoresonant control of ultrasonically assisted cutting. Mechatronics 14, 91–114 (2004)

    Article  Google Scholar 

  5. Okajima, T., Sekiguchi, H.: Self-oscillation technique for AFM in liquids. Appl. Surf. Sci. 210, 68–72 (2003)

    Google Scholar 

  6. Yabuno, H., Kaneko, H., Kuroda, M., Kobayashi, T.: Van der Pol type self-excited micro cantilever probe of atomic force microscopy. Nonlinear Dyn. 54, 137–149 (2008)

    Article  MATH  Google Scholar 

  7. Kuroda, M., Yabuno, H., Hayashi, K., Ashida, K.: Amplitude control in a van der Pol-type self-excited AFM microcantilever. J. Syst. Des. Dyn. 2(3), 886–897 (2008)

    Google Scholar 

  8. Babitsky, V.I.: Autoresonant mechatronic systems. Mechatronics 5, 483–495 (1995)

    Article  Google Scholar 

  9. Li, C. and He, X. : A bio-mimetic pipe crawling microrobot driven based on self-excited vibration. In: Proceedings of the IEEE, International Conference on Robotics and Biomimetics 15–18 Dec, (2007), Sanya, China.

  10. Ono, K., Takahashi, R., Imadu, A., Shimada, T.: Self-excited walking of a biped mechanism. Int. J. Robotics Res. 20(12), 953–966 (2001)

    Article  Google Scholar 

  11. Ono, K., Furuichi, T., Takahashi, R.: Self-excited walking of a biped mechanism with feet. Int J Robotics Res. 23(1), 55–68 (2004)

    Article  Google Scholar 

  12. Ono, K., Okada, T.: Self-excited vibratory system for a flutter mechanism. Trans. Jpn. Soc. Mech. Eng. Ser. C 41(3), 621–629 (1998)

    Google Scholar 

  13. Lee, Y., Lim, G., Moon, W.: A piezoelectric micro-cantilever bio-sensor using the mass-micro-balancing technique with self-excitation. Microsyst. Technol. 13, 563–567 (2007)

    Article  Google Scholar 

  14. Zook, J.D., Burns, D.W., Herb, W.R., Guckel, H., Kang, J.W., Ahn, Y.: Optically excited self-resonant micro-beams. Sens. Actuators A 52, 92–98 (1996)

    Article  Google Scholar 

  15. Kwasniewski, J., Dominik, I., Lalik, K.: Application of self-oscillating system for stress measurement in metal. J. Vibro-eng. 14(1), 1392–8716 (2012)

    Google Scholar 

  16. Mizuno, T., Yaoita, J., Takeuchi, M., Takasaki, M.: Mass measurement using self-excited oscillations via two-relay controller. IEEE Trans. Autom. Control 54(2), 416–420 (2009)

    Article  Google Scholar 

  17. Kobayashi, T., Oyama, S., Okada, H., Makimoto, N., Tanaka, K., Itoh1, T. and Maeda, R.: An electrostatic field sensor driven by self-excited vibration of sensor/actuator integrated piezoelectric micro cantilever. MEMS 2012, Paris, 29 Jan– 2 Feb (2012).

  18. Ono, K., Okada, T.: Self-Excited vibratory actuator (1st report, analysis of two-degree-of- freedom self-excited systems). Trans. JSME(C) 60(577), 92–99 (1994)

    Article  Google Scholar 

  19. Ono, K., Okada, T.: Self-Excited vibratory actuator (2nd report, self-excitation of insect wing model). Trans. JSME(C). 60(578), 117–124 (1994)

    Google Scholar 

  20. Ono, K., Okada, T.: Self-Excited vibratory actuator (3rd Report, biped walking mechanism by self-excitation). Trans. JSME(C). 60(579), 125–132 (1994)

    Google Scholar 

  21. Kurita, Y., Muragishi, Y.: Self-excited driving of electromagnetic-type vibratory machine. Trans. Jpn. Soc. Mech. Eng. Ser. C 63(605), 35–40 (1997)

    Article  Google Scholar 

  22. Kurita, Y., Muragishi, Y., Yasuda, H.: Amplitude control using variable feedback gain in self-excited driving vibratory machine. Trans. Jpn. Soc. Mech. Eng. Ser. C 62(598), 1691–1696 (1996)

    Article  Google Scholar 

  23. Hideomi, M., Yutaka, K., Yuichi, M.: Generation and control of self-exited vibration by self-sensing actuator. Dyn. Des. Conf. 2001(7), 1551–1556 (2001)

    Google Scholar 

  24. Lee, S.S. and White, R.M.: Self-excited piezoelectric cantilever oscillators. Proceedings of the 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, June 25–29 (1995).

  25. Kuroda, M., Yabuno, H., Hayashi, K., Ashida, K.: Amplitude control in a van der Pol-type self-excited AFM microcantilever. J. Syst. Des. Dyn. 2(3), 886–897 (2008)

    Google Scholar 

  26. Chatterjee, S., Malas, A.: On the stiffness-switching methods for generating self-excited oscillations in simple mechanical systems. J. Sound Vib. 331, 1742–1758 (2012)

    Article  Google Scholar 

  27. Aguilar, L.T., Boiko, I., Fridman, L., Iriarte, R.: Generating self-excited oscillations for underactuated mechanical systems via two-relay controller. Int. J. Control 82(9), 1678–1691 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gelb, A., Vander Velde, W.E.: MuiltipleInput Describing Functions and Nonlinear System Design. MaGraw Hill Book Company, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chatterjee.

Appendix 1

Appendix 1

The coefficients \(a_{1}\), \(a_{2}\), \(a_{3}\), \(a_{4}\), \(a_{5}\), and \(a_{6}\) used in Eq. (67) are given as follows:

$$\begin{aligned} \begin{array}{ll} a_6 &{}=\pi \mu _1 \mu _2 , \\ a_5 &{}=\pi ( {\mu _2 h_2 +\mu _2 \mu _1 h_1 +\mu _1 h_3 }), \\ a_4 &{}=\pi ( \mu _2 \alpha _1 +\mu _2 \alpha _2 +\mu _2 h_2 h_1 +\mu _1 \mu _2\\ &{}\quad +\mu _1 \mu _2 \alpha _1 +h_2 h_3 +h_3 \mu _1 h_1 +\mu _1 \alpha _2 ), \\ \end{array} \end{aligned}$$
$$\begin{aligned} a_3 =a_{30} +\left( {\frac{1}{A_3 \omega }}\right) a_{31} , \end{aligned}$$
$$\begin{aligned} a_2 =a_{20} +\left( {\frac{1}{A_3 \omega }}\right) a_{21} , \end{aligned}$$
$$\begin{aligned} a_1 =a_{10} +\left( {\frac{1}{A_3 \omega }}\right) a_{11} , \end{aligned}$$

\(a_{0}\) = \(\pi \alpha _{1}\alpha _{2}\),

where

$$\begin{aligned} a_{30} =\pi \!\left( {\begin{array}{l} \mu _2 h_1 \alpha _1 +\mu _2 h_1 \alpha _2 +\mu _2 h_2 +\mu _2 h_2 \alpha _1\\ \quad +h_3 \alpha _1 +h_3 \alpha _2 + \\ h_1 h_2 h_3 \!+\!\mu _1 h_3 \!+\!\mu _1 h_3 \alpha _1 \!+\!h_2 \alpha _2 \!+\!\mu _1 h_1 \alpha _2 \\ \end{array}}\!\right) \!, \end{aligned}$$
$$\begin{aligned} a_{31} =-4\alpha _2 k_c2 , \end{aligned}$$
$$\begin{aligned} a_{20} =\pi \!\left( {\begin{array}{l} \mu _2 \alpha _1 +\mu _2 \alpha _2 +\mu _2 \alpha _2 \alpha _1 +h_3 h_1 \alpha _1\\ \quad +h_3 h_1 \alpha _2 +h_3 h_2 + \\ h_3 h_2 \alpha _1 \!+\!\alpha _2 \alpha _1 \!+\!\alpha _2 h_2 h_1 \!+\!\mu _1 \alpha _2 \!+\!\mu _1 \alpha _2 \alpha _1 \\ \end{array}}\!\right) \!, \end{aligned}$$
$$\begin{aligned} \begin{array}{ll} a_{21} &{}=-\,4\alpha _2 k_c2 h_1 , \\ a_{10} &{}=\pi ( h_3 \alpha _1 +h_3 \alpha _2 +h_3 \alpha _2 \alpha _1 +\alpha _2 h_1 \alpha _1MYAMP]\quad +\,h_2 \alpha _2 +\alpha _2 h_2 \alpha _1 ), \\ a_{11} &{}=-\,4( {\alpha _2 k_c1 \alpha _1 +\alpha _2 k_c2 +\alpha _2 k_c2 \alpha _1 }). \\ \end{array} \end{aligned}$$

The coefficients used in Eq. (69) are given as follows:

$$\begin{aligned} p_8 =4\pi \mu _1 \mu _2 \alpha _2 k_c2 , \end{aligned}$$
$$\begin{aligned} p_6 =4\pi \alpha _2 \!\left( \!\!{\begin{array}{l} -h_3 h_2 k_{c2} -\mu _2 \alpha _1 k_{c2} -\alpha _2 \mu _1 k_{c2} -\mu _2 \alpha _2 k_{c2}\\ \quad -2\mu _1 \mu _2 k_{c2} -2\mu _1 \mu _2 k_{c2} \alpha _1 -\mu _1 \mu _2 k_{c1} \alpha _1\\ \quad +\mu _1 \mu _2 k_{c2} h_1^2 \\ \end{array}}\right) , \end{aligned}$$
$$\begin{aligned} p_4 =-4\pi \alpha _2 \left( {\begin{array}{l} -2\mu _1 \alpha _2 k_{c2} -\mu _1 \mu _2 k_{c1} \alpha _1 -2\mu _1 \mu _2 k_{c2} \alpha _1 \\ -\mu _1 \mu _2 \alpha _1^2 k_{c1} -\mu _1 \mu _2 \alpha _1^2 k_{c2} -\mu _1 \mu _2 k_{c2}\\ -h_3 h_2 k_{c1} \alpha _1 -2h_3 h_2 k_{c2} -2h_3 h_2 k_{c2} \alpha _1\\ -\mu _1 h_3 h_1 k_{c1} \alpha _1 -\mu _2 \alpha _2 k_{c1} \alpha _1 -\mu _1 \alpha _2 \alpha _1 k_{c1}\\ -\alpha _2 \alpha _1 k_{c2} -2\mu _1 \alpha _2 k_{c2} \alpha _1 +\alpha _2 k_{c2} h_1^2 \mu _1\\ +k_{c2} h_1^2 \mu _2 \alpha _1 +\alpha _2 k_{c2} h_1^2 \mu _2 +k_{c2} h_1^2 h_3 h_2\\ -\mu _2 h_2 h_1 k_{c1} \alpha _1 -k_{c1} \alpha _1^2 \mu _2 -2\mu _2 \alpha _1 k_{c2}\\ -\mu _2 \alpha _1^2 k_{c2} -2\mu _2 \alpha _2 k_{c2} -2\mu _2 \alpha _2 k_{c2} \alpha _1 \\ \end{array}}\right) , \end{aligned}$$
$$\begin{aligned} p_2 =-4\pi \alpha _2 \!\left( {\begin{array}{l} 2\mu _2 \alpha _2 k_{c2} \alpha _1 +\mu _1 \alpha _2 k_{c1} \alpha _1 +\mu _2 \alpha _1^2 k_{c1}\\ +2\alpha _2 \alpha _1 k_{c2} +h_3 h_2 k_{c1} \alpha _1 \!+\!\alpha _2 \alpha _1^2 k_{c2} \!+\!\alpha _2 \alpha _1^2 k_{c1}\\ +\mu _2 \alpha _1^2 k_{c2} +2h_3 h_2 k_{c2} \alpha _1 +\mu _2 \alpha _2 \alpha _1^2 k_{c2}\\ +\mu _2 \alpha _2 \alpha _1^2 k_{c1} +h_3 h_2 \alpha _1^2 k_{c1} +h_3 h_1 \alpha _1^2 k_{c1}\\ +h_3 h_1 \alpha _1^2 k_{c2} +h_3 h_1 \alpha _2 k_{c1} \alpha _1 -\alpha _2 k_{c2} h_1^2 \alpha _1\\ +h_3 h_2 \alpha _1^2 k_{c2} +\alpha _2 h_2 h_1 k_{c1} \alpha _1 +\alpha _2 \mu _1 \alpha _1^2 k_{c1}\\ +\alpha _2 \mu _1 \alpha _1^2 k_{c2} +h_3 h_2 k_{c2} \!+\!\mu _2 \alpha _1 k_{c2}\!+\!\mu _1 \alpha _2 k_{c2}\\ +\mu _2 \alpha _2 k_{c2} +2\mu _1 \alpha _2 k_{c2} \alpha _1 +\mu _2 \alpha _2 k_{c1} \alpha _1 \\ \end{array}}\!\!\!\right) \!, \end{aligned}$$
$$\begin{aligned} p_0 =4\pi \alpha _2 ^2\alpha _1 ( {k_c2 +\alpha _1 k_c2 +\alpha _1 k_c1 }). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malas, A., Chatterjee, S. Generating self-excited oscillation in a class of mechanical systems by relay-feedback. Nonlinear Dyn 76, 1253–1269 (2014). https://doi.org/10.1007/s11071-013-1208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1208-x

Keywords

Navigation