Skip to main content
Log in

A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For underactuated overhead cranes with payload hoisting/lowering, a partially saturated adaptive controller subject to unknown or uncertain system parameters is presented in this paper. To decrease the convergence time in the case of the overhead crane parameters already experienced by the system, the learning component is added to the proposed partially saturated adaptive controller. By introducing hyperbolic tangent functions into the control methods, the proposed controllers can guarantee soft trolley start even in the case of high initial velocities of trolley and cable. The convergence and stability performance of the closed-loop system is proven by Lyapunov techniques and LaSalle’s invariance theorem. Simulation results are listed to verify the adaptive performance with reduced actuating forces and strong robustness with respect to different external disturbances of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanfilippo, F., Hatledal, L.L., Styve, A.: Integrated flexible maritime crane architecture for the offshore simulation centre AS (OSC): a flexible framework for alternative maritime crane control algorithms. IEEE J. Ocean. Eng. 41(2), 450–461 (2016)

    Article  Google Scholar 

  2. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003)

    MATH  Google Scholar 

  3. Tang, R., Huang, J.: Control of bridge cranes with distributed-mass payloads under windy conditions. Mech. Syst. Signal Process. 72–73, 409–419 (2016)

    Article  Google Scholar 

  4. Zhang, Z., Wu, Y., Huang, J.: Differential-flatness-based finite time antiswing control for underactuated crane systems. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-3149-7

    Google Scholar 

  5. Zhang, M., Ma, X., Rong, X., Tian, X., Li, Y.: Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances. Mech. Syst. Signal Process. 76–77, 15–32 (2016)

    Article  Google Scholar 

  6. Mayr, J., Spanlang, F., Gattringer, H.: Mechatronic design of a self-balancing three-dimensional inertia wheel pendulum. Mechatronics 30, 1–10 (2015)

    Article  Google Scholar 

  7. Enev, S.: Feedback linearization control of the inertia wheel pendulum. Cybern. Inf. Technol. 14(3), 96–109 (2014)

    Google Scholar 

  8. Xie, X., Huang, J., Liang, Z.: Vibration reduction for flexible systems by command smoothing. Mech. Syst. Signal Process. 39(1–2), 461–470 (2013)

    Article  Google Scholar 

  9. Zhang, Z., Wu, Y.: Further results on global stabilization and tracking control for underactuated surface vessels with non-diagonal inertial and damping matrices. Int. J. Control 88(9), 1679–1692 (2015)

    Article  MATH  Google Scholar 

  10. Li, Z., Deng, J., Lu, R., Xu, Y., Bai, J., Su, C.: Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 740–749 (2016)

    Article  Google Scholar 

  11. Wu, Y., Gao, F., Zhang, Z.: Saturated finite-time stabilization of uncertain nonholonomic systems in feedforward-like form and its application. Nonlinear Dyn. 84, 1609–1622 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, F., Yuan, Y., Wu, Y.: Finite-time stabilization for a class of nonholonomic feedforward systems subject to inputs saturation. ISA Trans. 64, 193–201 (2016)

    Article  Google Scholar 

  13. Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)

    Article  MATH  Google Scholar 

  14. Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21(1), 370–378 (2015)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Z., Wu, Y.: Switching-based asymptotic stabilization of underactuated ships with non-diagonal terms in their system matrices. IET Control Theory Appl. 9(6), 972–980 (2015)

    Article  MathSciNet  Google Scholar 

  16. Pan, H., Sun, W., Gao, H., Yu, J.: Finite-time stabilization for vehicle active suspension systems with hard constraints. IEEE Trans. Intell. Transp. Syst. 16(5), 2663–2672 (2015)

    Article  Google Scholar 

  17. Pan, H., Sun, W., Gao, H., Jiang, X.: Disturbance observer-based adaptive tracking control with actuator saturation and its application. IEEE Trans. Autom. Sci. Eng. 13(2), 868–875 (2015)

    Article  Google Scholar 

  18. Sun, N., Wu, Y., Fang, Y., Chen, H., Lu, B.: Nonlinear continuous global stabilization control for underactuated RTAC systems: design, analysis, and experimentation. IEEE/ASME Trans. Mechatron. 22(2), 1104–1115 (2017)

    Article  Google Scholar 

  19. Zhang, M., Ma, X., Chai, H., Rong, X., Tian, X., Li, Y.: A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dyn. 85(2), 1079–1190 (2016)

    Article  MATH  Google Scholar 

  20. Blackburn, D., Singhose, W., Kitchen, J., Patrangenaru, V., Lawrence, J., Kamoi, T., Taura, A.: Command shaping for nonlinear crane dynamics. J. Vib. Control 16(4), 477–501 (2010)

    Article  MATH  Google Scholar 

  21. Singhose, W., Kim, D., Kenison, M.: Input shaping control of double-pendulum bridge crane oscillations. ASME J. Dyn. Syst. Meas. Control 130(3), 1–7 (2008)

    Article  Google Scholar 

  22. Chen, H., Fang, Y., Sun, N.: Optimal trajectory planning and tracking control method for overhead cranes. IET Control Theory Appl. 10(6), 692–699 (2016)

    Article  MathSciNet  Google Scholar 

  23. Sun, N., Fang, Y., Chen, H., Lu, B.: Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Trans. Ind. Electron. 64(3), 2135–2146 (2017)

    Article  Google Scholar 

  24. Qian, D., Tong, S., Lee, S.: Fuzzy-Logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom. Constr. 66, 133–143 (2016)

    Article  Google Scholar 

  25. Sun, N., Fang, Y., Chen, H.: Adaptive antiswing control for cranes in the presence of rail length constraints and uncertainties. Nonlinear Dyn. 81(1–2), 41–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, Z., Xia, X., Zhu, B.: Model predictive control for improving operational efficiency of overhead cranes. Nonlinear Dyn. 79(4), 2639–2657 (2015)

    Article  Google Scholar 

  27. Sun, N., Fang, Y.: Partially saturated nonlinear control for gantry cranes with hardware experiments. Nonlinear Dyn. 77(3), 655–666 (2014)

    Article  MATH  Google Scholar 

  28. Nayfeh, A.H.: Order reduction of related nonlinear systems-the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51(4), 483–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khazaee, M., Markazi, A.H.D., Omidi, E.: Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay. ISA Trans. 59, 314–324 (2015)

    Article  Google Scholar 

  30. Ngo, Q.H., Nguyen, N.P., Nguyen, C.N., Tran, T.H., Hong, K.S.: Fuzzy sliding mode control of container cranes. Int. J. Control Autom. Control 13(2), 419–425 (2015)

    Article  Google Scholar 

  31. Sun, N., Fang, Y., Zhang, X.: Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs. Automatica 49, 1318–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jolevski, D., Bego, O.: Model predictive control of gantry/bridge crane with anti-sway algorithm. J. Mech. Sci. Technol. 29(2), 827–834 (2015)

    Article  Google Scholar 

  33. Lee, L.H., Huang, P.H., Shih, V.C., Chiang, T.C., Chang, C.Y.: Parallel neural network combined with sliding mode control in overhead crane control system. J. Vib. Control 20(5), 749–760 (2014)

    Article  Google Scholar 

  34. Masoud, Z.N., Nayfeh, A.H., AI-Mousa, A.: Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. J. Vib. Control 9(1–2), 257–277 (2003)

    Article  MATH  Google Scholar 

  35. Solihin, M.I., Wahyudi, Legowo, A.: Fuzzy-tuned PID anti-swing control of automatic gantry crane. J. Vib. Control 16(1), 127–145 (2010)

  36. Piazzi, A., Visioli, A.: Optimal dynamic-inversion-based control of an overhead crane. IEE Proc. Control Theory Appl. 149(5), 405–411 (2002)

    Article  Google Scholar 

  37. Alhazza, K.A., Nayfeh, A.H., Daqaq, M.F.: On utilizing delayed feedback for active-multimode vibration control of cantilever beams. J. Sound Vib. 319(3–5), 735–752 (2009)

    Article  Google Scholar 

  38. Lu, X.: Madelung fluid description on a generalized mixed nonlinear Schrodinger equation. Nonlinear Dyn. 81(1–2), 239–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chang, C.Y., Hsu, K.C., Chiang, K.H.: Anti-sway and motion planning control of overhead cranes. Int. J. Innov. Comput. Inf. Control 6(7), 3313–3328 (2010)

    Google Scholar 

  40. Hu, G., Makkar, C., Dixon, W.E.: Energy-based nonlinear control of underactuated Euler–Lagrange systems subject to impacts. IEEE Trans. Autom. Control 52(9), 1742–1748 (2007)

    Article  MathSciNet  Google Scholar 

  41. Masoud, Z.N., Nayfeh, A.H., Mook, D.T.: Cargo pendulation reduction of ship-mounted cranes. Nonlinear Dyn. 35(3), 299–311 (2004)

    Article  MATH  Google Scholar 

  42. Corriga, G., Giua, A., Usai, G.: An implicit gain-scheduling controller for cranes. IEEE Trans. Control Syst. Technol. 6(1), 15–20 (1998)

    Article  Google Scholar 

  43. Garrido, S., Abderrahim, M., Giménez, A., Diez, R., Balaguer, C.: Anti-swinging input shaping control of an automatic construction crane. IEEE Trans. Autom. Sci. Eng. 5(3), 549–557 (2008)

    Article  Google Scholar 

  44. Trabia, M.B., Renno, J.M., Moustafa, K.A.: Generalized design of an anti-swing fuzzy logic controller for an overhead crane with hoist. J. Vib. Control 14(3), 319–346 (2008)

    Article  MATH  Google Scholar 

  45. Banavar, R., Kazi, F., Ortega, R., Manjarekar, N.S.: The IDC-PBC methodology applied to a gantry crane. In: Proceedings of the 17th international symposium in mathematical theory of networks and systems, pp. 143–147 (006)

  46. Bartolini, G., Pisano, A., Usai, E.: Second-order sliding-mode control of container cranes. Automatica 38(10), 1783–1790 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lee, H.H., Liang, Y., Segura, D.: A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting. ASME J. Dyn. Syst. Meas. Control 128(4), 842–845 (2006)

    Article  Google Scholar 

  48. Yu, W., Moreno-Armendariz, M.A., Rodriguez, F.O.: Stable adaptive compensation with fuzzy CMAC for an overhead crane. Inf. Sci. 181(21), 4895–4907 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Corriga, G., Giua, A., Usai, G.: An implicit gain-scheduling controller for cranes. IEEE Trans. Control Syst. Technol. 6(1), 15–20 (1998)

    Article  Google Scholar 

  50. Le, T.A., Kim, G.H., Kim, M.Y., Lee, S.G.: Partial feedback linearization control of overhead cranes with varying cable lengths. Int. J. Precis. Eng. Manuf. 13(4), 501–507 (2012)

    Article  Google Scholar 

  51. Sun, N., Fang, Y.: Nonlinear tracking control of underactuated cranes with load transferring and lowering: Theory and experimentation. Automatica 50, 2350–2357 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sun, N., Fang, Y., Chen, H., He, B.: Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: design and experiments. IEEE/ASME Trans. Mechatron. 20(5), 2107–2119 (2015)

  53. Dixon, W.E., Dawson, D.M., Zergeroglu, E., Behal, A.: Nonlinear Control of Wheeled Robots. Springer, Berlin (2001)

Download references

Acknowledgements

This study has been funded with the National High-tech Research and Development (863 Program) of China under Award No. 2015AA042307, Shandong Province Science and Technology Development Foundation, China, under Award No. 2014GGE27572, Shandong Province Independent Innovation and Achievement Transformation Special Foundation, China, under Awards Nos. 2014ZZCX04302, 2014ZZCX04303, 2015ZDXX0101E01, and the Fundamental Research Funds of Shandong University, China, under Awards Nos. 2015JC027, 2015JC051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ma, X., Rong, X. et al. A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters. Nonlinear Dyn 89, 1779–1791 (2017). https://doi.org/10.1007/s11071-017-3551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3551-9

Keywords

Navigation