Skip to main content
Log in

Saturated finite-time stabilization of uncertain nonholonomic systems in feedforward-like form and its application

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of finite-time stabilization by state feedback for a class of uncertain nonholonomic systems with inputs saturation. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is in feedforward-like form. Rigorous design procedure for saturated finite-time state feedback control is presented by using the adding a power integrator and the nested saturation methods. The development of saturated finite-time controller is also presented briefly for a class of dynamic nonholonomic systems in feedforward-like form. An application example for a kinematic hopping robot is provided to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Udwadia, F.E., Koganti, P.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82(1–2), 547–562 (2015)

    Article  MathSciNet  Google Scholar 

  2. Udwadia, F.E., Koganti, P.B., Wanichanon, T., Stipanovic, D.M.: Decentralised control of nonlinear dynamical systems. Int. J. Control 87(4), 827–843 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Urakubo, T.: Feedback stabilization of a nonholonomic system with potential fields: application to a two-wheeled mobile robot among obstacles. Nonlinear Dyn. 81(3), 1475–1487 (2015)

    Article  MathSciNet  Google Scholar 

  4. Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic constrained dynamic systems using Gauss’s principle. J. Appl. Mech. 60(3), 662–668 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–195. Birkhauser, Boston (1983)

    Google Scholar 

  6. Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27(1), 37–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, W.L., Huo, W.: Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator. Syst. Control Lett. 41(4), 225–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, Z.P.: Iterative design of time-varying stabilizers for multi-input systems in chained form. Syst. Control Lett. 28(5), 255–262 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tian, Y.P., Li, S.H.: Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica 38(7), 1139–1146 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yuan, H.L., Qu, Z.H.: Smooth time-varying pure feedback control for chained nonholonomic systems with exponential convergent rate. IET Control Theory Appl. 4(7), 1235–1244 (2010)

    Article  MathSciNet  Google Scholar 

  11. Walsh, G.C., Bushnell, L.G.: Stabilization of multiple input chained form control systems. Syst. Control Lett. 25(3), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hespanha, J.P., Linberzon, S., Morse, A.S.: Towards the supervisory control of uncertain nonholonomic systems. In: Proc. American Control Conf, San Diego, pp. 3520–3524 (1999)

  13. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Trans. Control Syst. Mag. 15(6), 20–36 (1995)

    Article  Google Scholar 

  14. Jiang, Z.P.: Robust exponential regulation of nonholonomic systems with uncertainties. Automatica 36(2), 189–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ge, S.S., Wang, Z.P., Lee, T.H.: Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39(8), 1451–1460 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y.G., Zhang, J.F.: Output feedback adaptive stabilization control design for nonholonomic systems with strong nonlinear drifts. Int. J. Control 78(7), 474–490 (2005)

    Article  MATH  Google Scholar 

  17. Xi, Z.R., Feng, G., Jiang, Z.P., Cheng, D.Z.: Output feedback exponential stabilization of uncertain chained systems. J. Franklin Inst. 344(1), 36–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng, X.Y., Wu, Y.Q.: Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts. Nonlinear Anal. Theory Methods Appl. 70(2), 904–920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, F.Z., Yuan, F.S., Yao, H.J.: Robust adaptive control for nonholonomic systems with nonlinear parameterization. Nonlinear Anal. Real World Appl. 11(4), 3242–3250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, F.Z., Yuan, F.S., Yao, H.J., Mu, X.W.: Adaptive stabilization of high order nonholonomic systems with strong nonlinear drifts. Appl. Math. Model. 35(9), 4222–4233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, Y.Q., Zhao, Y., Yu, J.B.: Global asymptotic stability controller of uncertain nonholonomic systems. J. Franklin Inst. 350(5), 1248–1263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, Y.G., Wang, J.K., Xi, Z.R.: Stabilization of uncertain chained form systems within finite settling time. IEEE Trans. Autom. Control 50(9), 1379–1384 (2005)

    Article  MathSciNet  Google Scholar 

  24. Wang, J.K., Zhang, G.S., Li, H.Y.: Adaptive control of uncertain nonholonomic systems in finite time. Kybernetika 45(5), 809–824 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Gao, F.Z., Yuan, F.S.: Adaptive finite-time stabilization for a class of uncertain high order nonholonomic systems. ISA Trans. 55(1), 41–48 (2015)

    Article  Google Scholar 

  26. Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1–2), 669–683 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, Y.Q., Gao, F.Z., Liu, Z.G.: Finite-time state feedback stabilization of nonholonomic systems with low-order nonlinearities. IET Control Theory Appl. 9(10), 1553–1560 (2015)

    Article  MathSciNet  Google Scholar 

  28. Perez-Arancibia, N.O., Tsao, T.C., Gibson, J.S.: Saturation-induced instability and its avoidance in adaptive control of hard disk drives. IEEE Trans. Control Syst. Technol. 18(2), 368–382 (2010)

    Article  Google Scholar 

  29. Zhao, J., Shen, H., Li, B., Wang, J.: Finite-time \(H_{\infty }\) control for a class of Markovian jump delayed systems with input saturation. Nonlinear Dyn. 73(1–2), 1099–1110 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang, Z.P., Lefeber, E., Nijmeijer, H.: Saturated stabilization and tracking of a nonholonomic mobile robot. Syst. Control Lett. 42(5), 327–332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, C.L.: Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs. Automatica 44(3), 816–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang, J.S., Wen, C.Y., Wang, W., Jiang, Z.P.: Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Syst. Control Lett. 62(3), 234–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, H., Wang, C.L., Liang, Z.Y., et al.: Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation. Asian J. Control 16(3), 692–702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Luo, J., Tsiotras, P.: Control design of chained form systems with bounded inputs. Syst. Control Lett. 39(2), 123–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, H.L., Qu, Z.H.: Saturated control of chained nonholonomic systems. Eur. J. Control 17(2), 172–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jammazi, C.: Continuous and discontinuous homogeneous feedbacks finite-time partially stabilizing controllable multichained systems. SIAM J. Control Optim. 52(1), 520–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Z.C., Wu, Y.Q., Sun, W.: Modeling and adaptive motion/force tracking for vertical wheel on rotating table. J. Syst. Eng. Electron. 26(5), 1060–1069 (2015)

    Article  Google Scholar 

  38. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 679–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qian, C.J., Li, J.: Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach. Int. J. Robust Nonlinear Control 16(9), 605–629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ding, S.H., Qian, C.J., Li, S.H., Li, Q.: Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations. Int. J. Robust Nonlinear Control 21(3), 271–294 (2011)

  41. Tian, W.S., Qian, C.J., Du, H.B.: A generalised homogeneous solution for global stabilisation of a class of non-smooth upper-triangular systems. Int. J. Control 87(5), 951–963 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body pendulum. Nonlinear Dyn. 81(1), 845–866 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and the anonymous reviewers for their constructive comments and suggestions for improving the quality of the paper. This work is partially supported by National Nature Science Foundation of China under Grants 61273091, 61403003, the Project of Taishan Scholar of Shandong Province of China under Grant TS20120529, the PhD Program Foundation of Ministry of Education of China under Grant 20123705110002, the Key Program of Science Technology Research of Education Department of Henan Province under Grants 13A120016, 14A520003, and the Graduate Student Innovation Foundation of Jiangsu Province of China under Grant No. KYLX15_0116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Wu.

Appendix

Appendix

Proof of Theorem 1

The proof is proceeded in two steps. In the first step, it is proved that the control law with coefficients \(\beta _{i}\)’s preset in (33) ensures that all states will converge to a region determined by the saturation function \(\sigma (\cdot )\). Then, the saturated controller (32) reduces to the unsaturated controller (23). As a result, the global finite-time stability for the closed-loop system (15) with (32) can be guaranteed. Since the proof is quite similar to that of Theorem 4.1 in [40], we only briefly present the first step of the proof.

Step 1 At this stage, we will find a time instant \(t_{1}\) in such a way that for \(t\ge t_{1}\)

$$\begin{aligned} X_{n}(t)\in Q_{n}=\left\{ X_{n}:|x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1}(t))|<\varepsilon \right\} \nonumber \\ \end{aligned}$$
(53)

By contradiction, it can be shown that there is a time instant \(t_{1}\) such that

$$\begin{aligned} \displaystyle |x_{n}^{1/r_{n}}(t_{1})-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}))|\le \frac{\varepsilon }{2} \end{aligned}$$
(54)

Otherwise, we assume that \(|x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1})(t)|>\varepsilon /2\) for all \(t\ge 0\). Now, the case when

$$\begin{aligned} \displaystyle x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1}(t)) >\frac{\varepsilon }{2},\quad \forall t\ge 0 \end{aligned}$$
(55)

is considered. In this case, for all \( t\ge 0\), by (15) and (32), we have

$$\begin{aligned} \displaystyle \dot{x}_{n}(t)= & {} -d_{n} \beta _{n}\sigma ^{r_{n+1}}\Big (x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1}(t))\Big )\nonumber \\\le & {} -c_{n1} \beta _{n}(\varepsilon /2)^{r_{n+1}}\nonumber \\:= & {} -\mu _{n}\varepsilon ^{r_{n+1}} \end{aligned}$$
(56)

with \(\mu _{n}=c_{n1} \beta _{n}(1/2)^{r_{n+1}}>0\), which implies that \(x_{n}(t)<x_{n}(0)-\mu _{n}\varepsilon ^{r_{n+1}}t\),\(\quad \forall t\ge 0\). Consequently, as time goes to infinity, \(x_{n}(t)\rightarrow -\infty \), which leads to a contradiction disavowing (55) by noticing the fact \(|v_{n-1}^{1/r_{n}}(X_{n-1}(t))|\le \beta _{n-1}^{1/r_{n}}\varepsilon \). Similarly, we can show the case \(\displaystyle x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1}(t)) <-\varepsilon /2,\quad \forall t\ge 0\), is also impossible. In conclusion, there must exist a time instant \(t_{1}\) such that (54) holds.

Next, we will prove that the following holds after the time instant \(t_{1}\)

$$\begin{aligned} \displaystyle |x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1}(t))| <\varepsilon ,\quad \forall t\ge t_{1} \end{aligned}$$
(57)

If (57) is not true, there exists at least one time instant \(t_{1}^{*}\) such that \(|x_{n}^{1/r_{n}}(t_{1}^{*})-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))|=\varepsilon \). Specifically, there are \(t_{1}^{'}<\infty \) and \(t_{1}^{*}<\infty \) such that either

$$\begin{aligned}&x_{n}^{1/r_{n}}(t_{1}^{'})-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'}))=\varepsilon /2 \end{aligned}$$
(58)
$$\begin{aligned}&x_{n}^{1/r_{n}}(t_{1}^{*})-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))=\varepsilon \end{aligned}$$
(59)
$$\begin{aligned}&\displaystyle \frac{\varepsilon }{2}\le x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1}(t))\le \varepsilon ,\quad t\in [t_{1}^{'},t_{1}^{*}]\nonumber \\ \end{aligned}$$
(60)

in the positive region, or \(x_{n}^{1/r_{n}}(t_{1}^{'})-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'}))=-\varepsilon /2\), \( x_{n}^{1/r_{n}}(t_{1}^{*})-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))=-\varepsilon \), \(-\varepsilon \le x_{n}^{1/r_{n}}(t)-v_{n-1}^{1/r_{n}}(X_{n-1}(t))\le -\varepsilon /2\), \(\forall t\in [t_{1}^{'},t_{1}^{*}]\) as the negative case.

In what follows, it will be claimed that the positive case (58)–(60) is impossible. By (60) and (56), we have

$$\begin{aligned} \displaystyle \dot{x}_{n}(t)\le -\mu _{n}\varepsilon ^{r_{n+1}},\quad t\in [t_{1}^{'},t_{1}^{*}] \end{aligned}$$
(61)

which leads to

$$\begin{aligned} \mu _{n}\varepsilon ^{r_{n+1}}(t_{1}^{*}-t_{1}^{'})\le x_{n}(t_{1}^{'})-x_{n}(t_{1}^{*}) \end{aligned}$$
(62)

By (58), (59) and the fact that \(|v_{n-1}^{1/r_{n}}(X_{n-1})|\le \beta _{n-1}^{1/r_{n}}\varepsilon \), using Lemma 3, we obtain

$$\begin{aligned} \displaystyle x_{n}(t_{1}^{'})= & {} \Big (\frac{\varepsilon }{2}+v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'}))\Big )^{r_{n}}\nonumber \\\le & {} (1+\beta _{n-1}^{1/r_{n}})^{r_{n}}\varepsilon ^{r_{n}}\le (1+\beta _{n-1})\varepsilon ^{r_{n}} \end{aligned}$$
(63)

and

$$\begin{aligned} \displaystyle x_{n}(t_{1}^{*})= & {} \Big (\varepsilon +v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))\Big )^{r_{n}}\nonumber \\\ge & {} -(1+\beta _{n-1}^{1/r_{n}})^{r_{n}}\varepsilon ^{r_{n}}\ge -(1+\beta _{n-1})\varepsilon ^{r_{n}} \end{aligned}$$
(64)

Combining (63) with (64), from (62), the following time estimate is obtained:

$$\begin{aligned} \displaystyle t_{1}^{*}-t_{1}^{'}=\frac{ x_{n}(t_{1}^{'})-x_{n}(t_{1}^{*})}{\mu _{n}\varepsilon ^{r_{n}+1}}\le \frac{ 2}{\mu _{n}}(1+\beta _{n-1})\varepsilon ^{-\omega _{1}} \end{aligned}$$
(65)

Further, in light of (62), it yields that \(x_{n}(t_{1}^{*})\le x_{n}(t_{1}^{'})\) which implies

$$\begin{aligned}&x_{n}^{1/r_{n}}(t_{1}^{*})-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))\le x_{n}^{1/r_{n}}(t_{1}^{'})\nonumber \\&\quad -\,v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'})) +v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'}))\nonumber \\&\quad -\,v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*})) \end{aligned}$$
(66)

A direct substitution of (58) and (59) into (66) leads to

$$\begin{aligned} \varepsilon /2\le |v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'}))| \end{aligned}$$
(67)

By considering (60) and the fact that \(|v_{n-1}^{1/r_{n}}(X_{n-1})|\le \beta _{n-1}^{1/r_{n}}\varepsilon \), one has

$$\begin{aligned}&\displaystyle |x_{n}(t)|\le (1+\beta _{n-1}^{1/r_{n}})^{r_{n}}\varepsilon ^{r_{n}}\nonumber \\&\quad \le (1+\beta _{n-1})\varepsilon ^{r_{n}},\quad t\in [t_{1}^{'},t_{1}^{*}] \end{aligned}$$
(68)

Under this condition, applying Lemma 6 and combining (65) yields

$$\begin{aligned}&\displaystyle |v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'}))|\nonumber \\&\quad \le \alpha _{n}(\cdot )\varepsilon ^{1+\omega _{1}} (t_{1}^{*}-t_{1}^{'})\nonumber \\&\quad \le \frac{ 2}{\mu _{n}}(1+\beta _{n-1})\alpha _{n}(\cdot )\varepsilon \end{aligned}$$
(69)

By the definition of \(\mu _{n}\) and the choice of (33), we have

$$\begin{aligned} \displaystyle \mu _{n}= & {} c_{n1} \beta _{n}(1/2)^{r_{n+1}}\nonumber \\&\displaystyle \ge c_{n1} (1/2)^{r_{n+1}} 2^{r_{n+1}}\nonumber \\&\quad \Big (\frac{4(1+\beta _{n-1})\alpha _{n-1}(\cdot )+1+2c_{n2}}{c_{n1}}\Big )\nonumber \\&\displaystyle >4(1+\beta _{n-1})\alpha _{n-1}(\cdot ) \end{aligned}$$
(70)

Substituting (70) into (69) and noticing (67), we obtain

$$\begin{aligned} \varepsilon /2\le |v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{*}))-v_{n-1}^{1/r_{n}}(X_{n-1}(t_{1}^{'}))|<\varepsilon /2\nonumber \\ \end{aligned}$$
(71)

which obviously is a contradiction. Therefore the case of (58)–(60) will never happen. Similarly, it can be shown, using an almost same argument as the positive case, that \(v_{n-1}^{1/r_{n}}(X_{n-1}(t))-v_{n-1}^{1/r_{n}}(X_{n-1}(t))\) will never cross \(-\varepsilon \). Hence for \(t\le t_{1}\) we have

$$\begin{aligned} |v_{n-1}^{1/r_{n}}(X_{n-1}(t))-v_{n-1}^{1/r_{n}}(X_{n-1}(t))|<\varepsilon \end{aligned}$$
(72)

Following the same line shown in the first step, at the final step, we can obtain that there exists a time instant \(t_{n}\), such that when \(t\ge t_{n}\), \(X_{n}(t)\) will enter and stay in the set

$$\begin{aligned}&Q=\Big \{X_{n}:|x_{1}^{1/r_{1}}|<\varepsilon ,|x_{2}^{1/r_{2}}-v_{1}^{1/r_{2}}(x_{1}(t))|\nonumber \\&\quad \qquad <\varepsilon ,\ldots ,|x_{n}^{1/r_{n}}-v_{n-1}^{1/r_{i}}(X_{n-1}(t))|<\varepsilon \Big \} \end{aligned}$$
(73)

Therefore, when \(t\ge t_{n}\), then by tuning parameter \(\varepsilon \), we can assure that \(Q\in \Lambda \) where \(\Lambda \) is defined in Lemma 5. By Lemma 5, we have the closed-loop system (15) and (23) is locally finite-time stable. Therefore, it can be concluded that closed-loop systems (15) and (32) are globally finite-time stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Gao, F. & Zhang, Z. Saturated finite-time stabilization of uncertain nonholonomic systems in feedforward-like form and its application. Nonlinear Dyn 84, 1609–1622 (2016). https://doi.org/10.1007/s11071-015-2591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2591-2

Keywords

Navigation