Skip to main content
Log in

Takagi–Sugeno fuzzy generalized predictive control for a class of nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a fuzzy generalized predictive control method for a class of nonlinear systems is studied. Firstly, based on the Takagi–Sugeno fuzzy model, a class of nonlinear systems and its fuzzy predictive model are presented. Next, based on the controlled autoregressive integrating moving average model transformed by the Takagi–Sugeno fuzzy model of the nonlinear systems, a novel fuzzy generalized predictive control method is proposed for the nonlinear systems, which combines fuzzy techniques and generalized predictive control theory. Lastly, two typical examples, the three-dimensional Lorenz nonlinear system and the four-dimensional Chen nonlinear system, are employed to verify the effectiveness and superiority of the proposed scheme. It also provides a reference for relevant control of nonlinear even chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, J.H., Chau, K.T., Chan, C.C.: Analysis of chaos in current-mode-controlled DC drive systems. IEEE Trans. Ind. Electron. 47(1), 67–76 (2000)

    Article  Google Scholar 

  2. Wang, J.K., Chen, X.Q., Fu, J.K.: Adaptive finite-time control of chaos in permanent magnet synchronous motor with uncertain parameters. Nonlinear Dyn. 78(2), 1321–1328 (2014)

    Article  MATH  Google Scholar 

  3. Gritli, H., Belghith, S., Khraief, N.: OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

    Article  MATH  Google Scholar 

  4. Chen, D.Y., Zhao, W.L., Ma, X.Y., Wang, J.: Control for a class of four-dimensional chaotic systems with random-varying parameters and noise disturbance. J. Vib. Control 19(7), 1080–1086 (2013)

    Article  MathSciNet  Google Scholar 

  5. Aghababa, M.P.: Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. Int. J. Control 86(10), 1744–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tang, Y., Gao, H.J., Kurths, J.: Distributed robust synchronization of dynamical networks with stochastic coupling. IEEE Trans. Circuits Syst. I-Regul. Pap. 61(5), 1508–1519 (2014)

    Article  MathSciNet  Google Scholar 

  7. Zhu, D.H., Hug, G.: Decomposed stochastic model predictive control for optimal dispatch of storage and generation. IEEE Trans. Smart Grid 5(4), 2044–2053 (2014)

    Article  Google Scholar 

  8. Farina, M., Betti, G., Giulioni, L., Scattolini, R.: An approach to distributed predictive control for tracking-theory and applications. IEEE Trans. Control Syst. Technol. 23(4), 1558–1566 (2014)

    Google Scholar 

  9. Patzelt, F., Pawelzik, K.: Criticality of adaptive control dynamics. Phys. Rev. Lett. 107(23), 238103 (2011)

    Article  Google Scholar 

  10. Pannocchia, G., Wright, S.J., Rawlings, J.B.: Partial enumeration MPC: robust stability results and application to an unstable CSTR. J. Process Control 21(10), 1459–1466 (2011)

    Article  Google Scholar 

  11. Marcos, N.I., Forbes, J.F., Guay, M.: Prediction-driven coordination of distributed MPC controllers for linear unconstrained dynamic systems. Int. J. Control 87(8), 1496–1512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Necoara, I., De Schutter, B., van den Boom, T.J.J., Hellendoorn, H.: Robust control of constrained max-plus-linear systems. Int. J. Robust Nonlinear Control 19(2), 218–242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rubagotti, M., Patrinos, P., Bemporad, A.: Stabilizing linear model predictive control under inexact numerical optimization. IEEE Trans. Autom. Control 59(6), 1660–1666 (2014)

    Article  Google Scholar 

  14. Farina, Marcello, Giulioni, Luca, Scattolini, Riccardo: Stochastic linear model predictive control with chance constraints—a review. J. Process Control 44, 53–67 (2016)

    Article  Google Scholar 

  15. Alkorta, P., Barambones, O., Cortajarena, J.A., Zubizarrreta, A.: Efficient multivariable generalized predictive control for sensorless induction motor drives. IEEE Trans. Ind. Electron. 61(9), 5126–5134 (2014)

    Article  Google Scholar 

  16. Sarhadi, P., Salahshoor, K., Khaki-Sedigh, A.: Robustness analysis and tuning of generalized predictive control using frequency domain approaches. Appl. Math. Model. 36(12), 6167–6185 (2012)

    Article  MATH  Google Scholar 

  17. Wang, Y.Q., Zhou, D.H., Gao, F.R.: Generalized predictive control of linear systems with actuator arrearage faults. J. Process Control 19(5), 803–815 (2009)

    Article  Google Scholar 

  18. Wang, Y., Chai, T., Fu, J., Zhang, Y., Fu, Y.: Adaptive decoupling switching control based on generalised predictive control. IET Control Theory Appl. 6(12), 1828–1841 (2012)

    Article  MathSciNet  Google Scholar 

  19. Guo, Z.K., Guan, X.P.: Nonlinear generalized predictive control based on online least squares support vector machines. Nonlinear Dyn. 79(2), 1163–1168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Attia, R., Orjuela, R., Basset, M.: Nonlinear cascade strategy for longitudinal control in automated vehicle guidance. Control Eng. Pract. 29, 225–234 (2014)

    Article  Google Scholar 

  21. Rhouma, A., Bouani, F., Bouzouita, B., Ksouri, M.: Model predictive control of fractional order systems. J. Comput. Nonlinear Dyn. 9(3), 031011 (2014)

    Article  Google Scholar 

  22. Boeck, M., Kugi, A.: Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Trans. Control Syst. Technol. 23(4), 1461–1473 (2014)

    Article  Google Scholar 

  23. Zhang, L.G., Liu, X.J.: The synchronization between two discrete-time chaotic systems using active robust model predictive control. Nonlinear Dyn. 74(4), 905–910 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, Q., Liu, L., Feng, G., Wang, Y., Qiu, J.B.: Universal fuzzy integral sliding-mode controllers based on T–S fuzzy models. IEEE Trans. Fuzzy Syst. 22(2), 350–362 (2014)

    Article  Google Scholar 

  25. Chen, D.Y., Zhao, W.L., Sprott, J.C., Ma, X.Y.: Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73(3), 1495–1505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fei, J.T., Yan, W.F.: Adaptive control of MEMS gyroscope using global fast terminal sliding mode control and fuzzy-neural-network. Nonlinear Dyn. 78(1), 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y.M., Tong, S.C.: Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead zone. IEEE Trans. Fuzzy Syst. 22(5), 1341–1347 (2014)

    Article  Google Scholar 

  28. Wang, B., Xue, J.Y., Chen, D.Y.: Takagi–Sugeno fuzzy control for a wide class of fractional-order chaotic systems with uncertain parameters via linear matrix inequality. J. Vib. Control 22(10), 2356–2369 (2016)

    Article  MathSciNet  Google Scholar 

  29. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  30. Park, J.H.: A note on synchronization between two different chaotic systems. Chaos Solitions Fractals 40(3), 1538–1544 (2009)

    Article  MATH  Google Scholar 

  31. Wang, B., Xue, J.Y., He, H.Y., Zhu, D.L.: Analysis on a class of double-wing chaotic system and its control via linear matrix inequality. Acta Phys. Sin. 63(21), 210502 (2014)

    Google Scholar 

  32. Wu, X.J., Lu, Y.: Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dyn. 57(1–2), 25–35 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the scientific research foundation of the National Natural Science Foundation (Numbers 51509210 and 51479173), Shaanxi province science and technology plan (No. 2016KTZDNY-01-01), the Science and Technology Project of Shaanxi Provincial Water Resources Department (No. 2015slkj-11), the International Cooperation Project of Ministry of Science and Technology (No. 2014DFG72150) and the 111 Project from the Ministry of Education of China (No. B12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Wang, B., Yang, L. et al. Takagi–Sugeno fuzzy generalized predictive control for a class of nonlinear systems. Nonlinear Dyn 89, 169–177 (2017). https://doi.org/10.1007/s11071-017-3443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3443-z

Keywords

Navigation