Skip to main content
Log in

Generalized projective synchronization of the fractional-order Chen hyperchaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we numerically investigate the hyperchaotic behaviors in the fractional-order Chen hyperchaotic systems. By utilizing the fractional calculus techniques, we find that hyperchaos exists in the fractional-order Chen hyperchaotic system with the order less than 4. We found that the lowest order for hyperchaos to have in this system is 3.72. Our results are validated by the existence of two positive Lyapunov exponents. The generalized projective synchronization method is also presented for synchronizing the fractional-order Chen hyperchaotic systems. The present technique is based on the Laplace transform theory. This simple and theoretically rigorous synchronization approach enables synchronization of fractional-order hyperchaotic systems to be achieved and does not require the computation of the conditional Lyapunov exponents. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Hifer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2001)

    Google Scholar 

  3. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  Google Scholar 

  4. Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984). doi:10.1109/TAC.1984.1103551

    Article  MATH  Google Scholar 

  5. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)

    Google Scholar 

  6. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    Google Scholar 

  7. Oustaloup, A., Levron, F., Nanot, F., Mathieu, B.: Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst.-I 47, 25–40 (2000)

    Article  Google Scholar 

  8. Chen, Y.Q., Moore, K.: Discretization schemes for fractional order differentiators and integrators. IEEE Trans. Circuits Syst.-I 49, 363–367 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002). doi:10.1023/A:1016534921583

    Article  MATH  MathSciNet  Google Scholar 

  10. Hwang, C., Leu, J.F., Tsay, S.Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47, 625–631 (2002). doi:10.1109/9.995039

    Article  MathSciNet  Google Scholar 

  11. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst.-I 42, 485–490 (1995)

    Article  Google Scholar 

  12. Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Chaos in a fractional order Duffing system. In: Proceedings of European Conference on Circuit Theory and Design, Budapest, pp. 1259–1262 (1997)

  13. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003). doi:10.1103/PhysRevLett.91.034101

    Article  Google Scholar 

  14. Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003). doi:10.1016/S0960-0779(02)00438-1

    Article  MATH  Google Scholar 

  15. Ahmad, W.M., Harb, A.M.: On nonlinear control design for autonomous chaotic systems of integer and fractional orders. Chaos Solitons Fractals 18, 693–701 (2003). doi:10.1016/S0960-0779(02)00644-6

    Article  MATH  Google Scholar 

  16. Li, C.G., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004). doi:10.1016/j.physa.2004.04.113

    Article  MathSciNet  Google Scholar 

  17. Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004). doi:10.1016/j.chaos.2004.02.013

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, C.G., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004). doi:10.1016/j.chaos.2004.02.035

    Article  MATH  Google Scholar 

  19. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002). doi:10.1016/S0370-1573(02)00331-9

    Article  MATH  MathSciNet  Google Scholar 

  20. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990). doi:10.1103/PhysRevLett.64.821

    Article  MathSciNet  Google Scholar 

  21. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74, 5028–5031 (1995). doi:10.1103/PhysRevLett.74.5028

    Article  Google Scholar 

  22. Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  23. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  24. Wu, X.J.: A new chaotic communication scheme based on adaptive synchronization. Chaos 16, 043118 (2006). doi:10.1063/1.2401058

    Article  MathSciNet  Google Scholar 

  25. Rosenblum, M.G., Pikovsky, A.S., Kurtz, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996). doi:10.1103/PhysRevLett.76.1804

    Article  Google Scholar 

  26. Pikovsky, A.S., Rosenlum, M.G., Osipov, G., Kurtz, J.: Phase synchronization of chaotic oscillators by external driving. Physica D 104, 219–238 (1997). doi:10.1016/S0167-2789(96)00301-6

    Article  MATH  MathSciNet  Google Scholar 

  27. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997). doi:10.1103/PhysRevLett.78.4193

    Article  Google Scholar 

  28. Zhang, Y., Sun, J.: Chaotic synchronization and anti-synchronization based on suitable separation. Phys. Lett. A 330, 442–447 (2004). doi:10.1016/j.physleta.2004.08.023

    Article  MATH  MathSciNet  Google Scholar 

  29. Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic system. Phys. Rev. Lett. 82, 3042–3045 (1999). doi:10.1103/PhysRevLett.82.3042

    Article  Google Scholar 

  30. Xu, D., Li, Z.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. Chaos 11, 439–442 (2001). doi:10.1063/1.1380370

    Article  MATH  Google Scholar 

  31. Xu, D., Chee, C.Y., Li, C.P.: A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions. Chaos Solitons Fractals 22, 175–180 (2004). doi:10.1016/j.chaos.2004.01.012

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, G.H.: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32, 1786–1790 (2007). doi:10.1016/j.chaos.2005.12.009

    Article  MATH  MathSciNet  Google Scholar 

  33. Hung, M.L., Yan, J.J., Liao, T.L.: Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input. Chaos Solitons Fractals 35, 181–187 (2008). doi:10.1016/j.chaos.2006.05.050

    Article  MathSciNet  Google Scholar 

  34. Li, C.G., Liao, X.F., Yu, J.B.: Synchronization of fractional order chaotic systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68, 067203 (2003). doi:10.1103/PhysRevE.68.067203

    Google Scholar 

  35. Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005). doi:10.1016/j.chaos.2005.02.023.

    Article  MATH  Google Scholar 

  36. Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360, 171–185 (2006). doi:10.1016/j.physa.2005.06.078

    Article  MathSciNet  Google Scholar 

  37. Li, C., Yan, J.: The synchronization of three fractional differential systems. Chaos Solitons Fractals 32, 751–757 (2007). doi:10.1016/j.chaos.2005.11.020

    Article  MathSciNet  Google Scholar 

  38. Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008). doi:10.1016/j.physa.2007.08.039

    Article  MathSciNet  Google Scholar 

  39. Ge, Z.M., Ou, C.Y.: Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 35, 705–717 (2008). doi:10.1016/j.chaos.2006.05.101

    Article  Google Scholar 

  40. Yu, Y., Li, H.X.: The synchronization of fractional-order Rössler hyperchaotic systems. Physica A 387, 1393–1403 (2008). doi:10.1016/j.physa.2007.10.052

    Article  Google Scholar 

  41. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51, 980–994 (1995) doi:10.1103/PhysRevE.51.980

    Google Scholar 

  42. Kocarev, L., Parlitz, U.: Generalized synchronization. predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–1819 (1996). doi:10.1103/PhysRevLett.76.1816

    Google Scholar 

  43. Wang, Y.W., Guan, Z.H.: Generalized synchronization of continuous chaotic system. Chaos Solitons Fractals 27, 97–101 (2006). doi:10.1016/j.chaos.2004.12.038

    Article  MATH  Google Scholar 

  44. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. R. Astron. Soc. 13, 529–539 (1967).

    Google Scholar 

  45. Samko, S.G., Klibas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  46. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999). doi:10.1142/S0218127499001024

    Article  MATH  MathSciNet  Google Scholar 

  47. Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15, 3367–3375 (2005). doi:10.1142/S0218127405013988

    Article  Google Scholar 

  48. Yan, Z.Y.: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 168, 1239–1250 (2005). doi:10.1016/j.amc.2004.10.016

    Article  MATH  MathSciNet  Google Scholar 

  49. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron Trans. Numer. Anal. 5, 1–6 (1997)

    MATH  MathSciNet  Google Scholar 

  50. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002). doi:10.1006/jmaa.2000.7194

    Article  MATH  MathSciNet  Google Scholar 

  51. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002). doi:10.1023/A:1016592219341

    Article  MATH  MathSciNet  Google Scholar 

  52. Wolf, A., Swinney, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985). doi:10.1016/0167-2789(85)90011-9

    Article  MATH  MathSciNet  Google Scholar 

  53. Muth, E.J.: Transform Methods with Applications to Engineering and Operations Research. Prentice-Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Lu, Y. Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dyn 57, 25–35 (2009). https://doi.org/10.1007/s11071-008-9416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9416-5

Keywords

Navigation