Skip to main content
Log in

A new 5D hyperchaotic system based on modified generalized Lorenz system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper reports a new five-dimensional (5D) hyperchaotic system with three positive Lyapunov exponents, which is generated by adding a linear controller to the second equation of a 4D system that is obtained by coupling of a 1D linear system and a 3D modified generalized Lorenz system. This hyperchaotic system has very simple algebraic structure but can exhibit complex dynamical behaviors. Of particular interest are the observations that the hyperchaotic system has a hyperchaotic attractor with three positive Lyapunov exponents under a unique equilibrium, three or infinite equilibria, and there are three types of coexisting attractors of this new 5D hyperchaotic system. Numerical analysis of phase trajectories, Lyapunov exponents, bifurcation, Poincaré projections and power spectrum verifies the existence of the hyperchaotic and chaotic attractors. Moreover, stability of hyperbolic or non-hyperbolic equilibria and two complete mathematical characterization for 5D Hopf bifurcation are rigorously studied. Finally, some electronic circuits are designed to implement the 5D hyperchaotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, New York (1982)

    Book  MATH  Google Scholar 

  3. Ning, C.Z., Haken, H.: Detuned lasers and the complex Lorenz equations: subcritical and super-critical Hopf bifurcations. Phys. Rev. A 41, 3826–3837 (1990)

    Article  Google Scholar 

  4. Dias, F.S., Mello, L.F., Zhang, J.G.: Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. Real World Appl. 11, 3491–3500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. C̆elikovský, S., Chen, G.R.: On a generalized Lorenz canonical form of chaotic systems. Int. J. Bifurc. Chaos 12, 1789–1812 (2002)

  6. Yang, Q.G., Chen, G.R., Zhou, T.S.: A unified Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos 16, 2855–2871 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, Q., Liao, X.X., Zeng, Z.G.: Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application. Sci. China Ser. F-Inf. Sci. 53, 1574–1583 (2010)

    Article  MathSciNet  Google Scholar 

  8. Kocarev, L.G., Maggio, M., Ogorzalek, M., Pecora, L., Yao, K.: Application of chaos in modern communication system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48, 385–527 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kapitaniak, T., Chua, L.O.: Hyperchaotic attractor of unidirectionally coupled Chua’s circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 477–482 (1994)

  11. Thamilmaran, K., Lakshmanan, M., Venkatesan, A.: A hyperchaos in a modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 14, 221–243 (2004)

    Article  MATH  Google Scholar 

  12. Wang, X.Y., Wang, M.J.: A hyperchaos generated from Lorenz system. Phys. A 387, 3751–3758 (2008)

    Article  MathSciNet  Google Scholar 

  13. Yang, Q.G., Liu, Y.J.: A hyperchaotic system from a chaotic system with one saddle and two stable node-foci. J. Math. Anal. Appl. 360, 293–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen, C.W., Yu, S.M., Lü, J.H., Chen, G.R.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I(61), 854–864 (2014)

    Article  Google Scholar 

  15. Yang, Q.G., Zhang, K.M., Chen, G.R.: Hyperchaotic attractors from a linearly controlled Lorenz system. Nonlinear Anal. Real World Appl. 10, 1601–1617 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y.X., Chen, G.R., Tang, W.K.S.: Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst. II(52), 204–207 (2005)

    Google Scholar 

  17. Qi, G.Y., Wyk, M.A., Wyk, B.J., Chen, G.R.: On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Y.M., Yang, Q.G.: A new Lorenz-type hyperchaotic system with a curve of equilibria. Math. Comput. Simul. 112, 40–55 (2015)

    Article  MathSciNet  Google Scholar 

  19. Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)

    Article  MathSciNet  Google Scholar 

  20. Hu, G.S.: Generating hyperchaotic attractors with three positive Lyapunov exponents via state feedback control. Int. J. Bifurc. Chaos 19, 651–660 (2009)

    Article  MATH  Google Scholar 

  21. Yang, Q.G., Chen, C.T.: A 5D hyperchaotic system with three positive Lyapunov exponents coined. Int. J. Bifurc. Chaos 23, 1350109-1-24 (2013)

  22. Bao, B.C., Jiang, P., Wu, H.G., Hu, F.W.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79, 2333–2343 (2015)

    Article  MathSciNet  Google Scholar 

  23. Vaidyanathan, S., Pham, V.-T., Volos, C.K.: A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur. Phys. J. Spec. Top. 224, 1575–1592 (2015)

    Article  Google Scholar 

  24. Yang, Q.G., Zhang, K.M., Chen, G.R.: A modified generalized Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos 19, 1931–1950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  27. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    MATH  Google Scholar 

  28. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1982)

  29. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field. Springer, New York (1983)

    Book  MATH  Google Scholar 

  30. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328, 1197–1202 (1999)

  31. Dong, E.Z., Liang, Z.H., Du, S.Z., Chen, Z.Q.: Topological horseshoe analysis on a four-wing attractor and its FPGA implement. Nonlinear Dyn. 83, 623–630 (2016)

    Article  MathSciNet  Google Scholar 

  32. Li, Q.D., Hu, S.Y., Tang, S., Zeng, G.: Hyperchaos and horseshoe in 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42, 1172–1188 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 11271139, 11671149) and the Natural Science Foundation of Guangdong Province (No. 2014A030313256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qigui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Bai, M. A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dyn 88, 189–221 (2017). https://doi.org/10.1007/s11071-016-3238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3238-7

Keywords

Navigation