Skip to main content
Log in

A new 5D hyperchaotic system with stable equilibrium point, transient chaotic behaviour and its fractional-order form

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Hidden attractors with the family of stable equilibrium points in higher-dimensional systems are more interesting and difficult discover compared to other families of hidden attractors. In this paper, a new 5D hyperchaotic system is reported. The proposed system has only one stable equilibrium point. Hence, the new system belongs to the category of hidden attractors. Although some lower-dimensional chaotic systems with stable equilibrium points are available in the literature, but very few hyperchaotic systems with stable equilibrium points are reported. The new system is simple considering the number of terms, compared with the existing similar type of systems. The proposed system exhibits multistability and transient chaotic behaviour. The fractional-order counterpart of the proposed system is analysed using Adams–Bashforth–Moulton algorithm and the chaotic nature is validated by bifurcation diagram. The simulation results confirm the claims made in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y Feng and W Pan, Pramana – J Phys. 88, 62 (2017)

    Article  ADS  Google Scholar 

  2. V-T Pham, S Jafari, T Kapitaniak, C Volos and S T Kingni, Int. J. Bifurc. Chaos  27(4), 1750053 (2017)

    Google Scholar 

  3. G A Leonov, N V Kuznetsov, O A Kuznestova, S M Seledzhi and V I Vagaitsev, Trans. Syst. Control  6(2), 1 (2011)

    Google Scholar 

  4. G A Leonov, N V Kuznetsov and V I Vagaitsev, Phys. Lett. A  375(23), 2230 (2011)

    ADS  MathSciNet  Google Scholar 

  5. G A Leonov, N V Kuznetsov and V I Vagaitsev, Physica D  241(18), 1482 (2012)

    ADS  MathSciNet  Google Scholar 

  6. G A Leonov and N V Kuznetsov, Int. J. Bifurc. Chaos  23(1), 1330002 (2013)

    Google Scholar 

  7. D Dudkowski, S Jafari, T Kapitaniak, N V Kuznetsov, G A Leonov and A Prasad, Phys. Rep.  637, 1 (2016)

    ADS  MathSciNet  Google Scholar 

  8. V-T Pham, S Jafari, C Volos, A Giakoumis, S Vaidyanathan and T Kapitaniak, IEEE Trans. Circuits Syst. II Express Briefs  63(9), 878 (2016)

    Google Scholar 

  9. M A Jafari, E Mliki, A Akgul, V-T Pham, S T Kingni, X Wang and S Jafari, Nonlinear Dyn.  1, 28 (2017)

    Google Scholar 

  10. M Kiseleva, N Kondratyeva, N Kuznetsov and G Leonov, Dynamics and control of advanced structures and machines (Springer-Verlag, Berlin, Heidelberg, 2017) pp. 119–124

  11. G A Leonov, N V Kuznetsov and T N Mokaev, Commun. Nonlinear Sci. Numer. Simul.  28(1–3), 166 (2015)

    ADS  MathSciNet  Google Scholar 

  12. G A Leonov, N V Kuznetsov and T N Mokaev, Eur. Phys. J. Spec. Top.  224(8), 1421 (2015)

    Google Scholar 

  13. K Rajagopal, L Guessas, A Karthikeyan, A Srinivasan and G Adam, Complexity  2017, 1 (2017)

    Google Scholar 

  14. K Rajagopal, L Guessas, S Vaidyanathan, A Karthikeyan and A Srinivasan, Math. Probl. Eng.  2017, 1 (2017)

    Google Scholar 

  15. K Rajagopal, A Karthikeyan and A K Srinivasan, Nonlinear Dyn.  87(4), 2281 (2017)

    Google Scholar 

  16. J P Singh and B K Roy, Optik  145, 209 (2017)

    ADS  Google Scholar 

  17. J P Singh and B K Roy, Trans. Inst. Meas. Control.  114, 2017, https://doi.org/10.1177/0142331217727580

  18. Z Wei, I Moroz and A Liu, Turkish J. Math.  38(4), 672 (2014)

    MathSciNet  Google Scholar 

  19. S T Kingni, S Jafari, H Simo and P Woafo, Eur. Phys. J. Plus  129(76), 1 (2014)

    Google Scholar 

  20. Z Wei and W Zhang, Int. J. Bifurc. Chaos  24, 1450127 (2014)

    Google Scholar 

  21. Z Wei, W Zhang, Z Wang and M Yao, Int. J. Bifurc. Chaos  25(2), 1550028 (2015)

    Google Scholar 

  22. Z Wei, P Yu, W Zhang and M Yao, Nonlinear Dyn.  82(1–2), 131 (2015)

    Google Scholar 

  23. Z Wei, I Moroz, Z Wang, J C Sprott and T Kapitaniak, Int. J. Bifurc. Chaos  26(7), 1650125 (2016)

    Google Scholar 

  24. Z Wei, V-T Pham, T Kapitaniak and Z Wang, Nonlinear Dyn.  85, 1635 (2016)

    Google Scholar 

  25. Z Wei, I Moroz, J C Sprott, Z Wang and W Zhang, Int. J. Bifurc. Chaos 27, 1730008 (2017)

    Article  Google Scholar 

  26. Z Wei, R Wang and A Liu, Math. Comput. Simul.  100, 13 (2014)

    Google Scholar 

  27. J P Singh and B K Roy, Int. J. Dyn. Control  6, 529 (2017), https://doi.org/10.1007/s40435-017-0332-8

    Google Scholar 

  28. V-T Pham, C Volos, S Jafari and T Kapitaniak, Nonlinear Dyn.  86(2), 1349 (2016)

    Google Scholar 

  29. J P Singh and B K Roy, Nonlinear Dyn.  89(3), 1845 (2017)

    Google Scholar 

  30. S Jafari, J C Sprott and M Molaie, Int. J. Bifurc. Chaos  26(6), 1650098 (2016)

    Google Scholar 

  31. E N Lorenz, J. Atmos. Sci.  20(2), 130 (1963)

    ADS  Google Scholar 

  32. J Lu, G Chen, D Cheng and S Celikovsky, Int. J. Bifurc. Chaos  12(12), 2917 (2002)

    Google Scholar 

  33. J P Singh and B K Roy, Optik  127(24), 11982 (2016)

    ADS  Google Scholar 

  34. J P Singh, K Lochan, N V Kuznetsov and B K Roy, Nonlinear Dyn.  90, 1277 (2017)

    Google Scholar 

  35. J P Singh and B K Roy, Chaos Solitons Fractals  92, 73 (2016)

    ADS  MathSciNet  Google Scholar 

  36. C Wang, H Xia and L Zhou, Pramana – J. Phys.  88, 34 (2017)

    ADS  Google Scholar 

  37. F Zhang, X Liao, G Zhang and C Mu, Pramana – J. Phys.  89, 84 (2017)

    ADS  Google Scholar 

  38. Z T Zhusubaliyev, E Mosekilde, A N Churilov and A Medvedev, Eur. Phys. J. Spec. Top.  306, 6 (2015)

    Google Scholar 

  39. L Wang and X S Yang, IFAC-PapersOnLine  48(18), 205 (2015)

    Google Scholar 

  40. V-T Pham, C Volos and T Kapitaniak, SpringerBriefs in Applied Sciences and Technology, https://doi.org/10.1007/978-3-319-53721-4 (2017)

  41. X Wang, V Pham, S Jafari, C Volos, J M Munoz-pacheco and E Tlelo-cuautle, IEEE Access  5, 8851 (2017)

    Google Scholar 

  42. X Wang and G Chen, in: Proceedings of the 4th International Workshop on Chaos-Fractals Theories and Applications (IWCFTA 2011) pp. 82–85

  43. S T Kingni, S Jafari, V-T Pham and P Woafo, Math. Comput. Simul.  132, 172 (2017)

    Google Scholar 

  44. Z Wei and Z Wang, Kybernetika  49(2), 359 (2013)

    MathSciNet  Google Scholar 

  45. M Molaie, S Jafari, J C Sprott and S M R H Golpayegani, Int. J. Bifurc. Chaos  23(11), 1350188 (2013)

    Google Scholar 

  46. X Wang and G Chen, Commun. Nonlinear Sci. Numer. Simul.  17(3), 1264 (2012)

    ADS  MathSciNet  Google Scholar 

  47. Z Wei and Q Yang, Nonlinear Anal. Real World Appl.  12(1), 106 (2011)

    MathSciNet  Google Scholar 

  48. Z Wei and I Pehlivan, Optoelectron. Adv. Mater. Rapid Commun.  6(7–8), 742 (2012)

    Google Scholar 

  49. Z Wei, Comput. Math. Appl.  63(3), 728 (2012)

    MathSciNet  Google Scholar 

  50. Z Wei and Q Yang, Nonlinear Dyn.  68(4), 543 (2011)

    MathSciNet  Google Scholar 

  51. S Huan, Q Li and X-S Yang, Int. J. Bifurc. Chaos  23(1), 1350002 (2013)

    Google Scholar 

  52. Z Wei and W Zhang, Int. J. Bifurc. Chaos  24(10), 1450127 (2014)

    Google Scholar 

  53. Q Li, H Zeng and J Li, Nonlinear Dyn.  79(4), 2295 (2015)

    Google Scholar 

  54. Z Wei, I Moroz, J C Sprott, A Akgul and W Zhang, Chaos 27(3), 033101 (2017)

  55. J C Sprott, Int. J. Bifurc. Chaos  21(9), 2391 (2011)

    Google Scholar 

  56. A Wolf, J B Swift, H L Swinney and J A Vastano, Physica D  16(3), 285 (1985)

    ADS  MathSciNet  Google Scholar 

  57. K Diethelm, Electron. Trans. Numer. Anal.  5, 1 (1997)

    MathSciNet  Google Scholar 

  58. A Charef, H H Sun, Y Y Tsao and B Onaral, IEEE Trans. Automat. Contr.  37(9), 1465 (1992)

    Google Scholar 

  59. G Adomian, Comput. Math. Appl.  21(5), 101 (1991)

    MathSciNet  Google Scholar 

  60. K Diethelm and A D Freed, Forschung und Wissenschaftliches Rechnen, edited by S Heinzel and T Plesser (1999) pp. 57–71

  61. K Diethelm, N J Ford and A D Freed, Numer. Algorithms  36(1), 31 (2004)

    ADS  MathSciNet  Google Scholar 

  62. K Diethelm and N J Ford, J. Math. Anal. Appl.  265, 229 (2002)

    MathSciNet  Google Scholar 

  63. H H Sun, A A Abdelwahab and B Owaral, IEEE Trans. Autom. Control  29(5), 441 (1984)

    Google Scholar 

  64. M S Tavazoei and M Haeri, IET Signal Process.  1(4), 171 (2007)

    Google Scholar 

  65. Marius-F Danca, Nonlinear Dyn.  81(1–2), 227 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Prakash Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.P., Rajagopal, K. & Roy, B.K. A new 5D hyperchaotic system with stable equilibrium point, transient chaotic behaviour and its fractional-order form. Pramana - J Phys 91, 33 (2018). https://doi.org/10.1007/s12043-018-1599-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1599-9

Keywords

PACS No

Navigation