Skip to main content
Log in

Numerical algorithm for the variable-order Caputo fractional functional differential equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

While several high-order methods have been extensively developed for fixed-order fractional differential equations (FDEs), there are no such methods for variable-order FDEs. In this paper, we propose an accurate and robust approach to approximate the solution of functional Dirichlet boundary value problem with a type of variable-order Caputo fractional derivative. The proposed method is principally based on the shifted Chebyshev polynomials as basis functions and the matrix representation of variable-order fractional derivative of such polynomials. The underline variable-order FDE is then reduced to a system of algebraic equations, which greatly simplifies the solution process. Through numerical results, we confirm that the proposed scheme is very efficient and accurate for handling such problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  2. Du, N., Wang, H., Liu, W.: A fast gradient projection method for a constrained fractional optimal control. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0125-1

    MathSciNet  Google Scholar 

  3. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J.Comput. Phys. 281(15), 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. 40(2), 832–845 (2016)

  5. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71, 653–662 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lorenzo, C.F., Hartley, T.T.: Initialization, conceptualization, and application in the generalized fractional calculus. NASA/TP-1998-NASA/TP-208415, 1998

  9. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14(9–10), 1659–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cooper, G.R.J., Cowan, D.R.: Filtering using variable order vertical derivatives. Comput. Geosci. 30(5), 455–459 (2004)

    Article  Google Scholar 

  12. Tseng, C.: Design of variable and adaptive fractional order FIR differentiators. Signal Process. 86(10), 2554–2566 (2006)

    Article  MATH  Google Scholar 

  13. Ramirez, L.E.S., Coimbra, C.F.M.: A variable order constitutive relation for viscoelasticity. Ann. Phys. 16(7–8), 543–552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A Stat. Mech. its Appl. 388(21), 4586–4592 (2009)

    Article  Google Scholar 

  15. Zhang, H., Liu, F., Zhuang, P., Turner, I., Anh, V.: Numerical analysis of a new spacetime variable fractional order advectiondispersion equation. Appl. Math. Comput. 242, 541–550 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, W., Zhang, J., Zhang, J.: A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 16(1), 76–92 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Abdekawy, M.A., Zaky, M.A., Bhrawy, A.H., Baleanu, D.: Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Romanian Rep. Phys. 67(3), 773–791 (2015)

    Google Scholar 

  18. Sun, H.G., Chen, W., Sheng, H., Chen, Y.Q.: On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A 374, 906–910 (2010)

    Article  MATH  Google Scholar 

  19. Chen, Y.-M., Wei, Y.-Q., Liu, D.-Y., Yu, H.: Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Appl. Math. Lett. 46, 83–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A characteristic difference method for the variable-order fractional advection–diffusion equation. J. Appl. Math. Comput. 42(1–2), 371–386 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, X., Sun, Z.-Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  Google Scholar 

  23. Bhrawy, A.H.: A highly accurate collocation algorithm for 1+1 and 2+1 fractional percolation equations. J. Vib. Control (2015). doi:10.1177/1077546315597815

    MathSciNet  Google Scholar 

  24. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations. J. Comput. Phys. 294, 462–483 (2015)

    Article  MathSciNet  Google Scholar 

  25. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation. J. Vib. Control (2015). doi:10.1177/1077546314566835

    Google Scholar 

  26. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms (2016). doi:10.1007/s11075-015-0087-2

    MathSciNet  Google Scholar 

  27. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1), 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    Article  MathSciNet  Google Scholar 

  29. Li, X.Y., Wu, B.Y.: A numerical technique for variable fractional functional boundary value problems. Appl. Math. Lett. 43, 108–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hale, J.K., Lunel, S.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  31. Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional-Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  32. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  33. Balachandran, K., Chandrasekaran, M.: Existence of solutions of a delay differential equation with nonlocal condition. Indian J. Pure Appl. Math. 27, 443–450 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Byszewski, L., Acka, H.: Existence of solutions of a semilinear functional differential evolution nonlocal problem. Nonlinear Anal. Theory Methods Appl. 34(1), 65–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolmanovskii, V.B., Nosov, V.R.: Stability of neutral-type functional differential equations. Nonlinear Anal. Theory Methods Appl. 6, 873–910 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, K., Xia, X.: On the exponential stability in mean square of neutral Stochastic functional differential equations. Syst. Control Lett. 37, 207–215 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. Theory Methods Appl. 69(10), 3337–3343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Henderson, J., Ouahab, A.: Fractional functional differential inclusions with finite delay. Nonlinear Anal. Theory Methods Appl. 70(5), 2091–2105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Agarwal, R.P., Zhou, Y., Wang, J.-R., Luo, X.: Fractional functional differential equations with causal operators in Banach spaces. Math. Comput. Modell. 54(5), 1440–1452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wei, X.T. Lu, X.Z.: The periodic solutions of the compound singular fractional differential system with delay. Int. J. Differ. Equ. 2010 (2010) ID 509286

  41. Liu, Y.: Asymptotic behaviour of functional-differential equations with proportional time delays. Eur. J. Appl. Math. 7(01), 11–30 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sakar, M.G., Uludag, F., Erdogan, F.: Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method. Appl. Math. Modell. (2016). doi:10.1016/j.apm.2016.02.005

  43. Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation. Numer. Algorithms 71(1), 151–180 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)

    Article  MATH  Google Scholar 

  45. Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131(7), 763–767 (2005)

    Article  Google Scholar 

  46. Atanackovic, T.M., Pilipovic, S.: Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14(1), 94–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193(1), 185–192 (2011)

    Article  Google Scholar 

  48. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev Tau approximation. J. Optim. Theory Appl. (2016). doi:10.1007/s10957-016-0863-8

    Google Scholar 

  49. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81, 1023–1052 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the reviewers for carefully reading the paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Zaky, M.A. Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85, 1815–1823 (2016). https://doi.org/10.1007/s11071-016-2797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2797-y

Keywords

Mathematics Subject Classification

Navigation