Skip to main content
Log in

A numerical solution of variable order fractional functional differential equation based on the shifted Legendre polynomials

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper deals with the numerical approach of a class of variable order fractional functional boundary value problems. The fractional derivative is described in the variable order Caputo sense. The method is based upon shifted Legendre polynomials. The properties of shifted Legendre polynomials are utilized to reduce the given fractional differential equation problem to the system of algebraic equations. To show the performance of the method some numerical examples are provided and the results are compared with two other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 85(3), 1815–1823 (2016). https://doi.org/10.1007/s11071-016-2797-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo 53(1), 1–17 (2016). https://doi.org/10.1007/s10092-014-0132-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)

    MATH  Google Scholar 

  4. Funaro, D.: Polynomial Approximation of Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  5. Galal, I., El Baghdady, M.S., El Azab, W.S.: Legendre–Gauss–Lobatto pseudo-spectral method for one-dimensional advection–diffusion equation. Sohag J. Math. 2(1), 29–35 (2015)

    MATH  Google Scholar 

  6. He, L., Yi, L., Tang, P.: Numerical scheme and dynamic analysis for variable-order fractional van der Pol model of nonlinear economic cycle. Adv. Differ. Equ. 2016, 195 (2016). https://doi.org/10.1186/s13662-016-0920-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Jia, Y.T., Xu, M.Q., Lin, Y.Z.: A numerical solution for variable order fractional functional differential equation. Appl. Math. Lett. 64, 125–130 (2017). https://doi.org/10.1016/j.aml.2016.08.018

    Article  MathSciNet  MATH  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  9. Li, X.Y., Wu, B.Y.: A numerical technique for variable fractional functional boundary value problems. Appl. Math. Lett. 43, 108–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, S., Xu, Y., Yue, W.: Numerical solution of a variable-order fractional financial system. J. Appl. Math. 2012, 417942 (2012). https://doi.org/10.1155/2012/417942

  11. Saadatmandia, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Saadatmandi, A., Razzaghi, M., Dehghan, M.: Hartley series approximations for the parabolic equations. Int. J. Comput. Math. 82, 1149–1156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Saadatmandi, A., Dehghan, M.: A Tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification. Comput. Math. Appl. 52, 933–940 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saadatmandi, A., Dehghan, M.: Numerical solution of a mathematical model for capillary formation in tumor angiogenesis via the tau method. Commun. Numer. Methods Eng. 24, 1467–1474 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saadatmandi, A., Dehghan, M.: Numerical solution of the one-dimensional wave equation with an integral condition. Numer. Methods Partial Differ. Equ. 23, 282–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Valerio, D., Costa, J.S.: Variable-order fractional derivatives and their numerical approximations. Signal Process. 3(91), 470–483 (2011)

    Article  MATH  Google Scholar 

  18. Xu, Y., He, Z.: Synchronization of variable-order fractional financial system via active control and method. Cent. Eur. J. Phys. 11(6), 824–835 (2013). https://doi.org/10.2478/s11534-013-0237-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Dehghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, R. A numerical solution of variable order fractional functional differential equation based on the shifted Legendre polynomials. SeMA 76, 217–226 (2019). https://doi.org/10.1007/s40324-018-0173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-018-0173-1

Keywords

Mathematics Subject Classification

Navigation