Skip to main content
Log in

Integer and fractional-order entropy analysis of earthquake data series

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the Surprising Behavior of Distance Metrics in High Dimensional Space. Springer, New York (2001)

    Book  MATH  Google Scholar 

  2. Ashtari Jafari, M.: Statistical prediction of the next great earthquake around Tehran, Iran. J. Geodyn. 49(1), 14–18 (2010)

    Article  Google Scholar 

  3. Balasis, G., Daglis, I.A., Papadimitriou, C., Anastasiadis, A., Sandberg, I., Eftaxias, K.: Quantifying dynamical complexity of magnetic storms and solar flares via nonextensive Tsallis entropy. Entropy 13(10), 1865–1881 (2011)

    Article  Google Scholar 

  4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  5. Bhattacharya, P., Chakrabarti, B.K., et al.: A fractal model of earthquake occurrence: theory, simulations and comparisons with the aftershock data. In: Journal of Physics: conference series, vol. 319, pp. 012004. IOP Publishing (2011)

  6. Carlson, J.M., Langer, J.S., Shaw, B.E.: Dynamics of earthquake faults. Rev. Mod. Phys. 66(2), 657 (1994)

    Article  MATH  Google Scholar 

  7. Clauset, A., Young, M., Gleditsch, K.S.: On the frequency of severe terrorist events. J. Confl. Resolut. 51(1), 58–87 (2007)

    Article  Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)

    MATH  Google Scholar 

  9. Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  10. Das, R., Wason, H., Sharma, M.: Magnitude conversion to unified moment magnitude using orthogonal regression relation. J. Asian Earth Sci. 50, 44–51 (2012)

    Article  Google Scholar 

  11. De Rubeis, V., Hallgass, R., Loreto, V., Paladin, G., Pietronero, L., Tosi, P.: Self-affine asperity model for earthquakes. Phys. Rev. Lett. 76(14), 2599 (1996)

    Article  Google Scholar 

  12. De Santis, A., Cianchini, G., Favali, P., Beranzoli, L., Boschi, E.: The Gutenberg–Richter law and entropy of earthquakes: two case studies in Central Italy. Bull. Seismol. Soc. Am. 101(3), 1386–1395 (2011)

    Article  Google Scholar 

  13. Ekström, G., Nettles, M., Abers, G.A.: Glacial earthquakes. Science 302(5645), 622–624 (2003)

    Article  Google Scholar 

  14. Geller, R.J.: Earthquake prediction: a critical review. Geophys. J. Int. 131(3), 425–450 (1997)

    Article  Google Scholar 

  15. Goltz, C., Böse, M.: Configurational entropy of critical earthquake populations. Geophys. Res. Lett. 29(20), 51 (2002)

    Article  Google Scholar 

  16. Gutenberg, B., Richter, C.F.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34(4), 185–188 (1944)

    Google Scholar 

  17. Hallgass, R., Loreto, V., Mazzella, O., Paladin, G., Pietronero, L.: Earthquake statistics and fractal faults. Phys. Rev. E 56(2), 1346 (1997)

    Article  Google Scholar 

  18. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  19. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A K-means clustering algorithm. Appl. Stat. 28(1), 100–108 (1979)

    Article  MATH  Google Scholar 

  20. Hussein, H., Elenean, K.A., Marzouk, I., Peresan, A., Korrat, I., El-Nader, E.A., Panza, G., El-Gabry, M.: Integration and magnitude homogenization of the egyptian earthquake catalogue. Nat. Hazards 47(3), 525–546 (2008)

    Article  Google Scholar 

  21. International Seismological Centre: On-line Bulletin. International Seismological Centre, Thatcham, United Kingdom (2012). http://www.isc.ac.uk

  22. Ionescu, C.M.: The Human Respiratory System; An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics. Springer, New York (2013)

    MATH  Google Scholar 

  23. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  24. Kagan, Y.Y.: Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148(3), 520–541 (2002)

    Article  Google Scholar 

  25. Kagan, Y.Y., Jackson, D.D.: Probabilistic forecasting of earthquakes. Geophys. J. Int. 143(2), 438–453 (2000)

    Article  Google Scholar 

  26. Kanamori, H., Brodsky, E.E.: The physics of earthquakes. Rep. Prog. Phys. 67(8), 1429 (2004)

    Article  MathSciNet  Google Scholar 

  27. Keilis-Borok, V.: The lithosphere of the earth as a nonlinear system with implications for earthquake prediction. Rev. Geophys. 28(1), 19–34 (1990)

    Article  Google Scholar 

  28. Khinchin, A.I.: Mathematical Foundations of Information Theory, vol. 434. Courier Dover Publications, New York (1957)

    MATH  Google Scholar 

  29. Levada, A.: Learning from complex systems: on the roles of entropy and Fisher information in pairwise isotropic gaussian Markov random fields. Entropy 16(2), 1002–1036 (2014)

    Article  Google Scholar 

  30. Lopes, A.M., Tenreiro Machado, J.A., Pinto, C., Galhano, A.: Multidimensional scaling visualization of earthquake phenomena. J. Seismol. 18(1), 163–179 (2014)

    Article  Google Scholar 

  31. Lopes, A.M., Tenreiro Machado, J.A., Pinto, C., Galhano, A.: Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. 66(5), 647–658 (2013)

    Article  MathSciNet  Google Scholar 

  32. Machado, J.T.: Fractional order generalized information. Entropy 16(4), 2350–2361 (2014)

    Article  Google Scholar 

  33. Martínez-Torres, M.R., García, F.B., Marín, S.T., Vázquez, S.G.: A digital signal processing teaching methodology using concept-mapping techniques. IEEE Trans. Educ. 48(3), 422–429 (2005)

    Article  Google Scholar 

  34. Mega, M.S., Allegrini, P., Grigolini, P., Latora, V., Palatella, L., Rapisarda, A., Vinciguerra, S.: Power-law time distribution of large earthquakes. Phys. Rev. Lett. 90(18), 188,501 (2003)

    Article  MATH  Google Scholar 

  35. Mignan, A., Woessner, J.: Estimating the magnitude of completeness for earthquake catalogs. Community Online Resour. Stat. Seism. Anal. (2012). doi:10.5078/corssa-00180805

  36. Nicholson, T., Sambridge, M., Gudmundsson, O.: On entropy and clustering in earthquake hypocentre distributions. Geophys. J. Int. 142(1), 37–51 (2000)

  37. Ōmori, F.: On the After-Shocks of Earthquakes, vol. 7. The University, Tokyo (1894)

  38. Peng, Z., Gomberg, J.: An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosci 3(9), 599–607 (2010)

    Article  Google Scholar 

  39. Pinto, C., Mendes Lopes, A., Tenreiro Machado, J.A.: A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3558–3578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  41. Sarlis, N., Christopoulos, S.R.: Natural time analysis of the centennial earthquake catalog. Chaos Interdiscip. J. Nonlinear Sci. 22(2), 023,123 (2012)

    Article  Google Scholar 

  42. Scordilis, E.: Empirical global relations converting \(m_s\) and \(m_b\) to moment magnitude. J. Seismol. 10(2), 225–236 (2006)

    Article  Google Scholar 

  43. Seely, A.J., Newman, K.D., Herry, C.L.: Fractal structure and entropy production within the central nervous system. Entropy 16(8), 4497–4520 (2014)

    Article  Google Scholar 

  44. Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective methods. Taxon. 11(2), 33–40 (1962)

    Article  Google Scholar 

  45. Sornette, A., Sornette, D.: Earthquake rupture as a critical point: Consequences for telluric precursors. Tectonophysics 179(3), 327–334 (1990)

    Article  Google Scholar 

  46. Sornette, D.: Earthquakes: from chemical alteration to mechanical rupture. Phys. Rep. 313(5), 237–292 (1999)

    Article  MathSciNet  Google Scholar 

  47. Sotolongo-Costa, O., Posadas, A.: Fragment-asperity interaction model for earthquakes. Physical Rev. Lett. 92(4), 048,501 (2004)

    Article  Google Scholar 

  48. Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L., Ghattas, O.: The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329(5995), 1033–1038 (2010)

    Article  Google Scholar 

  49. Stein, S., Liu, M., Calais, E., Li, Q.: Mid-continent earthquakes as a complex system. Seismol. Res. Lett. 80(4), 551–553 (2009)

    Article  Google Scholar 

  50. Stucchi, M., Albini, P., Mirto, M., Rebez, A.: Assessing the completeness of italian historical earthquake data. Ann. Geophys. 47(2–3), 659–673 (2004)

    Google Scholar 

  51. Tenreiro Machado, J.A., Lopes, A.M.: Analysis and visualization of seismic data using mutual information. Entropy 15(9), 3892–3909 (2013)

    Article  MathSciNet  Google Scholar 

  52. Turcotte, D.L., Malamud, B.D.: Earthquakes as a complex system. Int. Geophys. 81, 209-IV (2002)

    Article  Google Scholar 

  53. Utsu, T., Ogata, Y., Matsu’ura, R.S.: The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43(1), 1–33 (1995)

    Article  Google Scholar 

  54. Valério, D., Trujillo, J.J., Rivero, M., Tenreiro Machado, J.A., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)

    Article  Google Scholar 

  55. Wiemer, S.: A software package to analyze seismicity: Zmap. Seismol. Res. Lett. 72(3), 373–382 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the International Seismological Centre (ISC) for the data (http://www.isc.ac.uk/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António M. Lopes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.M., Tenreiro Machado, J.A. Integer and fractional-order entropy analysis of earthquake data series. Nonlinear Dyn 84, 79–90 (2016). https://doi.org/10.1007/s11071-015-2231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2231-x

Keywords

Navigation