Skip to main content
Log in

Adaptive sliding mode controller design for nonlinear teleoperation systems using singular perturbation method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the presence of communication latency in a bilateral teleoperation system, stability and transparency are highly regarded. The major problem with teleoperation systems is complex dynamic and subsequently designing the controller. This essay presents a novel method of controller design, based on singular perturbation framework for the bilateral teleoperation of nonlinear robots through the Internet. Using this method makes it much easier to design the controller because controller designing is done for reduced-order subsystem not full-order system. In this paper, teleoperation system dynamics was decomposed into slave (slow subsystem) and error (fast subsystem, different from master and slave), which contains position and velocity, and an adaptive sliding mode controller was designed for each of them. For constant and time-varying delay, the positions of master–slave were compared together and controlling signal was applied to the slave; therefore, they could track each other in the shortest possible time. In the simulation, the stability and performance results of teleoperation system were obtained under the proposed controller and compared with those of another approach. In this research, having higher speed and lower control signal amplitude, at the same time, elucidates the absolute superiority of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Micaelli, A., Marchal, P., Vertut, J.: Short transmission delay on a force reflective bilateral manipulator. In: Proceeding 4th Rom_An, Sywarsaw, pp. 269–275 (1981)

  2. Trevelyan, J.: Simplifying robotics—a challenge for research. Rob. Auton. Syst. 21(3), 207–220 (1997)

    Article  Google Scholar 

  3. Suomela, J., Savela, M., Halme, A.: Applying telepresence and augmented reality to teleoperate field robots. Rob. Auton. Syst. 26(2–3), 117–125 (1999)

    Google Scholar 

  4. Bapna, D., Maimone, M., Thomas, G., Wettergreen, D.: Developing Nomad for robotic exploration of the Atacama Desert. Rob. Auton. Syst. 26(2–3), 127–148 (1999)

    Google Scholar 

  5. Shiose, T., Akashi, G., Sawaragi, T.: Foundations for designing an ecological interface for mobile robot teleoperation. Rob. Auton. Syst. 31(3), 193–207 (2000)

    Article  Google Scholar 

  6. Kwon, D.-S., Hannaford, B., Ryu, J.-H.: Stable teleoperation with time-domain passivity control. IEEE Trans. Rob. Autom. 20(2), 365–373 (2004)

    Article  Google Scholar 

  7. Lewis, F.L., Huang, J.Q.: Neural network predictive control for nonlinear dynamicm systems with time-delay. IEEE Trans. Neural Netw. 14(2), 377–389 (2003)

    Article  Google Scholar 

  8. Liu, J.N.K., Wang, M.: Interactive control for Internet-based mobile robot teleoperation. Rob. Auton. Syst. 52(2–3), 160–179 (2005)

    Google Scholar 

  9. Postigo, J.F., Mut, V., Slawiñski, E.: Bilateral teleoperation through the Internet. Rob. Auton. Syst. 55(3), 205–215 (2007)

    Article  Google Scholar 

  10. Ferreira, A., Boukhnifer, M.: Wave-based passive control for transparent micro-teleoperation system. Rob. Auton. Syst. 54(7), 601–615 (2006)

    Article  Google Scholar 

  11. Parra-Vega, V., Arteaga, M.A., García-Valdovinos, L.-G.: Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay. Rob. Auton. Syst. 55(8), 609–617 (2007)

    Article  Google Scholar 

  12. Chernova, S., Veloso, M., Browning, B., Argall, B.D.: A survey of robot learning from demonstration. Rob. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  13. Momeni, H., Janabi-Sharifi, F., Hosseini-Suny, K.: A modified adaptive controller design for teleoperation systems. Rob. Auton. Syst. 58(5), 676–683 (2010)

    Article  Google Scholar 

  14. Seo, Ch., Kim, Jong-Phil, Ryu, J., Park, S.: Robustly stable rate-mode bilateral teleoperation using an energy-bounding approach. Mechatronics 21, 176–184 (2011)

    Article  Google Scholar 

  15. Talebi, H.A., Sedigh, A.K., Forouzantabar, A.: Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn. 67(2), 1123–1134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding, H., Fei, J.: Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dyn. 70(2), 1563–1573 (2012)

    Article  MathSciNet  Google Scholar 

  17. Sirouspour, S., Shahdi, A.: Adaptive control of bilateral teleoperation with time delay. Int. J. Intell. Mechatron. Robot. 2(1), 1–27 (2012)

    Article  Google Scholar 

  18. Abbink, D.A., Boessenkool, H., Heemskerk, C.J.M., Koning, J.F., Wildenbeest, J.G.W.: How operator admittance affects the response of a teleoperation system to assistive forces—a model analytic study and simulation. Fusion Eng. Des. 88(9–10), 2001–2005 (2013)

    Google Scholar 

  19. Azorin, J.M., Ferre, M., Peña, C., Aracil, R.: Bilateral control by state convergence based on transparency for systems with time delay. Rob. Auton. Syst. 61(2), 86–94 (2013)

    Article  Google Scholar 

  20. Liu, P.X., El Saddik, A., Islam, S.: Nonlinear control for teleoperation systems with time varying delay. Nonlinear Dyn. 76(2), 931–954 (2014)

    Article  MATH  Google Scholar 

  21. Alfi, A., Shokri-Ghaleh, H.: Optimal synchronization of teleoperation systems via cuckoo optimization algorithm. Nonlinear Dyn. 78(4), 2359–2376 (2014)

    Article  MathSciNet  Google Scholar 

  22. Khalil, H., O’Reilly, J., Kokotovic, P.: Singular Perturbation Methods in Control Analysis and Design. Society for Industrial and Applied Mathematics, Philadelphia (1999)

  23. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  Google Scholar 

  24. Moehlis, J.: Canards for a reduction of the Hodgkin–Huxley equations. J. Math. Biol. 52(2), 141–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rubin, W.M., Rubin, J., Wechselberger, M.: Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model. Biol. Cybern. 97(1), 5–32 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    Article  MathSciNet  Google Scholar 

  27. Siddarth, A., Valasek, J.: Global tracking control structures for nonlinear singularly perturbed aircraft systems. In: Proceedings of the CEAS EuroGNC, pp. 13–15 (2011)

  28. Ricardo, P., Marco, D.S., Teixeira, A.: Regularization and singular perturbation techniques for non-smooth systems. Phys. D 241(22), 1948–1955 (2012)

    Article  MathSciNet  Google Scholar 

  29. Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. The MIT Press, Cambrige (1992)

    Google Scholar 

  30. Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. In: IEEE Robotics and Automation Society, vol. 22, no. 2, pp. 269–281 (2006)

  31. Craig, J.J.: Introduction to Robotics Mechanics and Control, 2nd edn. (1989)

  32. Janabi-Sharifi, F.: Collision: modelling, simulation and identification of robotic manipulators interacting with environments. J. Intell. Robot. Syst. 13, 1–44 (1995)

    Article  Google Scholar 

  33. Pinto, M.A., Trofimchuk, S.I., Ivanov, A.F.: Global behavior in nonlinear system with delayed feedback. In: IEEE Conference on Decision and Control, Sydney, Australia, pp. 4420–4421 (2000)

  34. Ivanov, A. F., Sharkovsky, A.N.: Oscillations in singularly perturbed delay equations. Dynamics reported, pp. 165–224 (1991)

  35. Reinoso, O., Sabater, J. M., Perez, C., Azorin, J. M.: A new control method of teleoperation with time delay. In: The International Conference on Advanced Robotics Coimbra, Portugal, pp. 100–105 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Ganjefar.

Appendix

Appendix

Proof: According to the Eq. (37) for the slow subsystem, we have:

$$\begin{aligned} \dot{\bar{{X}}}= & {} \mathop {AA}\nolimits _s \bar{{X}}+\mathop {BB}\nolimits _{Fs} \mathop F\nolimits _m (t-T)+BB_{us}\bar{{U}}(t)\nonumber \\ AA_s= & {} \left[ {{\begin{array}{cc} 0&{} 1 \\ {AA_{s21}} &{} {AA_{s22}} \\ \end{array}} } \right] ,\quad BB_{Fs} =\left[ {{\begin{array}{c} 0 \\ {BB_{Fs2}} \\ \end{array}} } \right] ,\nonumber \\ B_{us}= & {} \left[ {{\begin{array}{c} 0 \\ {BB_{us2}} \\ \end{array}} } \right] \end{aligned}$$
(54)

We can rewrite the above equation in this form:

$$\begin{aligned} \left\{ {{\begin{array}{l} {\dot{\bar{{x}}}_1 =\bar{{x}}_2 }\\ \dot{\bar{{x}}}_2 =AA_{s21} \bar{{x}}_1 +AA_{s22} \bar{{x}}_2 +BB_{Fs2} F_m \\ \qquad -AA_{s21} \bar{{x}}_1 -AA_{s22} \bar{{x}}_2 -k_s (a_s \bar{{x}}_1 +\bar{{x}}_2 )\\ \end{array}} } \right. \end{aligned}$$
(55)

After simplification, we have:

$$\begin{aligned} \left\{ {{\begin{array}{l} {\dot{\bar{{x}}}_1 =\bar{{x}}_2}\\ {\dot{\bar{{x}}}_2 =BB_{Fs2} F_m -a_s k_s \bar{{x}}_1 -k_s \bar{{x}}_2} \\ \end{array}} } \right. \end{aligned}$$
(56)

Equilibrium point for above system is \(\left( \frac{BB_{Fs2}}{a_s k_s},0\right) \) and we must transfer it to origin; hence, we utilize a new variable to solve this problematic trouble. Therefore,

$$\begin{aligned} \left[ {{\begin{array}{c} {y_1} \\ {y_2} \\ \end{array}} } \right]= & {} \left[ {{\begin{array}{c} {\bar{{x}}_1 -\frac{BB_{Fs2}}{a_s k_s} F_m} \\ {\bar{{x}}_2} \\ \end{array}} } \right] \Rightarrow \left[ {{\begin{array}{c} {\dot{y}_1} \\ {\dot{y}_2} \\ \end{array}} } \right] \nonumber \\= & {} \left[ {{\begin{array}{c} {y_2} \\ {-a_s k_s y_1 -k_s y_2} \\ \end{array}} } \right] \end{aligned}$$
(57)

Now, we suggest following Lyapunov function for the slow subsystem with this new variable:

$$\begin{aligned} V= & {} Y^{T}PY=\left[ {{\begin{array}{cc} {y_1} &{} {y_2} \\ \end{array}} } \right] \left[ {{\begin{array}{cc} {p_1} &{} 0 \\ 0&{} {p_2} \\ \end{array}} } \right] \left[ {{\begin{array}{c} {y_1} \\ {y_2} \\ \end{array}} } \right] \nonumber \\= & {} p_1 y_1^2 +p_2 y_2^2 \Rightarrow \left\{ {{\begin{array}{l} {V(0,0)=0} \\ {V>0\quad \mathrm{for}\ Y\ne 0} \\ \mathrm{we\ show}\ \dot{V}<0 \\ \end{array}} } \right. \end{aligned}$$
(58)

Now:

$$\begin{aligned} \dot{V}= & {} \frac{\partial V}{\partial Y}\frac{\partial Y}{\partial t}=\left[ {{\begin{array}{cc} {2p_1 y_1} &{} {2p_2 y_2} \\ \end{array}} } \right] \left[ {{\begin{array}{c} {y_2} \\ {-a_s k_s y_1 -k_s y_2} \\ \end{array}} } \right] \nonumber \\= & {} 2p_1 y_1 y_2 -2a_s k_s y_1 y_2 -2k_s p_2 y_2^2 \end{aligned}$$
(59)

We choose:

$$ \begin{aligned} p_1 =a_s k_s \quad \& \quad p_2 =1\quad \& \quad a_s >0\quad \& \quad k_s >0 \end{aligned}$$
(60)

After simplification, we have:

$$\begin{aligned} \dot{V}=-2k_s y_2^2 <0 \end{aligned}$$
(61)

Therefore,

$$\begin{aligned} V=a_s k_s y_1^2 +y_2^2 \end{aligned}$$
(62)

After substitution, we have:

$$\begin{aligned} V=a_s k_s \left( \bar{{x}}_1 -\frac{BB_{Fs2}}{a_s k_s} F_m (t-T)\right) ^{2}+\bar{{x}}^{2} \end{aligned}$$
(63)

Now, we continue proof for the fast subsystem. By using Eq. (38), we have:

$$\begin{aligned} \frac{d\hat{{Z}}}{d\tau }= & {} {AA}_f \hat{{Z}}+ {BB}_{Ff} F_m (t-T)+BB_{uf} \hat{{U}}\nonumber \\ AA_f= & {} \left[ {{\begin{array}{cc} 0&{} 1 \\ {AA_{f21}} &{} {AA_{f22}} \\ \end{array}} } \right] ,\quad BB_{Ff} =\left[ {{\begin{array}{c} 0 \\ {BB_{Ff2}} \\ \end{array}} } \right] ,\nonumber \\ B_{uf}= & {} \left[ {{\begin{array}{c} 0 \\ {BB_{uf2}} \\ \end{array}} } \right] \end{aligned}$$
(64)

After rewriting the Eq. (64), we obtain:

$$\begin{aligned} \left\{ {{\begin{array}{l} {\dot{\hat{{z}}}_1 =\hat{{z}}_2}\\ \dot{\hat{{z}}}_2 =AA_{f21} \hat{{z}}_1 +AA_{f22} \hat{{z}}_2 +BB_{Ff2} F_m \\ \quad -\,AA_{f21} \bar{{z}}_1 -AA_{f22} \hat{{z}}_2 -BB_{Ff2} F_m\\ \quad -\,k_f (a_f \hat{{z}}_1 +\hat{{z}}_2 )\\ \end{array}} } \right. \end{aligned}$$
(65)

After simplification, we reach:

$$\begin{aligned} \left\{ {{\begin{array}{l} {\dot{\hat{{z}}}_1 =\hat{{z}}_2} \\ {\dot{\hat{{z}}}_2 =-a_f k_f \hat{{z}}_1 -k_f \hat{{z}}_2} \\ \end{array}} } \right. \end{aligned}$$
(66)

Equilibrium point for above system is in origin (0,0); therefore, we offer the following Lyapunov function for the fast subsystem:

$$\begin{aligned} W= & {} \hat{{Z}}^{T}R\hat{{Z}}=\left[ {{\begin{array}{cc} {z_1} &{} {z_2} \\ \end{array}} } \right] \left[ {{\begin{array}{cc} {r_1} &{} 0 \\ 0&{} {r_2} \\ \end{array}} } \right] \left[ {{\begin{array}{c} {z_1} \\ {z_2} \\ \end{array}} } \right] \nonumber \\= & {} r_1 \hat{{z}}_1^2 +r_2 \hat{{z}}_2^2\Rightarrow \left\{ {{\begin{array}{l} {w(0,0)=0} \\ w>0\quad \mathrm{for}\ \hat{{Z}}\ne 0\\ \mathrm{we\ show}\ \dot{W}<0\\ \end{array}} } \right. \end{aligned}$$
(67)

Now:

$$\begin{aligned} \frac{dW}{d\tau }= & {} \frac{\partial W}{\partial \hat{{Z}}} \frac{\partial \hat{{Z}}}{\partial t}=\left[ {{\begin{array}{cc} {2r_1 \hat{{z}}_1} &{} {2r_2 \hat{{z}}_2} \\ \end{array}} } \right] \left[ \! {{\begin{array}{c} {\hat{{z}}_2} \\ {-a_f k_f \hat{{z}}_1 \!-\!k_f \hat{{z}}_2} \\ \end{array}} } \!\right] \nonumber \\= & {} 2r_1 \hat{{z}}_1 \hat{{z}}_2 -2a_f k_f \hat{{z}}_1 \hat{{z}}_2 -2k_f r_2 \hat{{z}}_2^2\ \end{aligned}$$
(68)

We choose:

$$ \begin{aligned} r_1 =a_f k_f \quad \& \quad r_2 =1\quad \& \quad a_f \!>\!0\quad \& \quad k_f \!>\!0 \end{aligned}$$
(69)

After simplification, we have:

$$\begin{aligned} \dot{W}=-2k_f \hat{{z}}_2^2 <0 \end{aligned}$$
(70)

Therefore,

$$\begin{aligned} W=a_f k_f \hat{{z}}_1^2 +\hat{{z}}_2^2 \end{aligned}$$
(71)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjefar, S., Sarajchi, M.H. & Hamidi Beheshti, M.T. Adaptive sliding mode controller design for nonlinear teleoperation systems using singular perturbation method. Nonlinear Dyn 81, 1435–1452 (2015). https://doi.org/10.1007/s11071-015-2078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2078-1

Keywords

Navigation