Skip to main content
Log in

Hopf-zero bifurcation in a generalized Gopalsamy neural network model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study Hopf-zero bifurcation in a generalized Gopalsamy neural network model. By using multiple time scales and center manifold reduction methods, we obtain the normal forms near a Hopf-zero critical point. A comparison between these two methods shows that the two normal forms are equivalent. Moreover, bifurcations are classified in two-dimensional parameter space near the critical point, and numerical simulations are presented to demonstrate the applicability of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cochoki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. Wiley, New York (1993)

    Google Scholar 

  2. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  3. Driessche, P., Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58, 1878–1890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-stage neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  5. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 35, 1257–1272 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 35, 1273–1290 (1988)

    MathSciNet  Google Scholar 

  7. Cao, J.: Global asymptotic stability of delayed bi-directional associative memory neural networks. Appl. Math. Comput. 142, 333–339 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kosko, B.: Bi-directional associative memories. IEEE Trans. Syst. Man Cybern. 18, 49–60 (1988)

    Article  MathSciNet  Google Scholar 

  9. Xu, C., Tang, X., Liao, M.: Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays. Neural Netw. 23, 872–880 (2010)

    Article  Google Scholar 

  10. Baldi, P., Atiya, A.F.: How delays affect neural dynamics and learning. IEEE Trans. Neural Netw. 5, 612–621 (1994)

    Article  Google Scholar 

  11. Campbell, S.A.: Stability and bifurcation of a simple neural network with multiple time delays. Fields Inst. Commun. 21, 65–79 (1999)

    Google Scholar 

  12. Liao, X., Li, C., Wong, K.: Criteria for exponential stability of Cohen–Grossberg neural networks. Neural Netw. 17, 1401–1414 (2004)

    Article  MATH  Google Scholar 

  13. Wu, W., Cui, B., Huang, M.: Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays. Chaos Solitons Fractals 33, 1355–1361 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gopalsamy, K., Leung, I.K.C.: Convergence under dynamical thresholds with delays. IEEE Trans. Neural Netw. 8, 341–348 (1997)

    Article  Google Scholar 

  15. Pakdaman, K., Malta, C.P.: A note on convergence under dynamical thresholds with delays. IEEE Trans. Neural Netw. 9, 231–233 (1998)

    Article  Google Scholar 

  16. Guo, S., Huang, L.: Hopf bifurcating periodic orbits in a ring of neurons with delays. Physica D 183, 19–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, S., Yuan, Y.: Delay-induced primary rhythmic behavior in a two-layer neural network. Neural Netw. 24, 65–74 (2011)

    Article  MATH  Google Scholar 

  18. Huang, C., He, Y., Huang, L., Yuan, Z.: Hopf bifurcation analysis of two neurons with three delays. Nonlinear Anal., Real World Appl. 8, 903–921 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, Y., Han, M., Wei, J.: Stability and Hopf bifurcation on a simplified BAM neural network with delays. Physica D 200, 185–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, L., Zou, X.: Hopf bifurcation in bidirectional associative memory neural networks with delays: analysis and computation. J. Comput. Appl. Math. 167, 73–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cao, J., Liang, J.: Boundedness and stability for Cohen–Grossberg neural network with time-varying delays. J. Math. Anal. Appl. 296, 665–685 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, T., Rong, L.: Delay-independent stability analysis of Cohen–Grossberg neural networks. Phys. Lett. A 317, 436–449 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohamad, S., Gopalsamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput. 135, 17–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, L., Zou, X.: Exponential stability of Cohen–Grossberg neural networks. Neural Netw. 15, 415–422 (2002)

    Article  Google Scholar 

  25. Wang, L., Zou, X.: Harmless delays in Cohen–Grossberg neural networks. Physica D 170, 162–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gupta, P.D., Majee, N.C., Roy, A.B.: Stability, bifurcation and global existence of a Hopf bifurcating periodic solution for a class of three-neuron delayed network models. Nonlinear Anal. 67, 2934–2954 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, C., Han, M., Pang, X.: Global Hopf bifurcation analysis on a BAM neural network with delays. Phys. Lett. A 360, 689–695 (2007)

    Article  MathSciNet  Google Scholar 

  28. Wei, J., Li, M.Y.: Global existence of periodic solutions in a tri-neuron network model with delays. Physica D 198, 106–119 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei, J., Yuan, Y.: Synchronized Hopf bifurcation analysis in a neural network model with delays. J. Math. Anal. Appl. 312, 205–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, X.: Local and global Hopf bifurcation in a two-neuron network with multiple delays. Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 1015–1028 (2008)

    Article  Google Scholar 

  31. Campbell, S.A., Yuan, Y., Bungay, S.D.: Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling. Nonlinearity 18, 2827–2846 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yuan, Y.: Dynamics in a delayed-neural network. Chaos Solitons Fractals 33, 443–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yan, X.: Bifurcation analysis in a simplified tri-neuron BAM network model with multiple delays. Nonlinear Anal., Real World Appl. 9, 963–976 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Campbell, S.A., Yuan, Y.: Zero singularities of codimension two and three in delay differential equations. Nonlinearity 21, 2671–2691 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo, S., Chen, Y., Wu, J.: Two-parameter bifurcations in a network of two neurons with multiple delays. J. Differ. Equ. 244, 444–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liao, X., Guo, S., Li, C.: Stability and bifurcation analysis in tri-neuron model with time delay. Nonlinear Dyn. 49, 319–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liao, X., Wong, K., Wu, Z.: Bifurcation analysis in a two neuron system with distributed delays. Physica D 149, 123–141 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nayfeh, A.H.: Perturbation Methods. Wiley-Interscience, New York (1973)

    MATH  Google Scholar 

  39. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley-Interscience, New York (1981)

    MATH  Google Scholar 

  40. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    MATH  Google Scholar 

  41. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    MATH  Google Scholar 

  42. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nayfeh, A.H.: Order reduction of retarded nonlinear systems–the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu, P.: Computation of normal forms via a perturbation technique. J. Sound Vib. 211, 19–38 (1998)

    Article  MATH  Google Scholar 

  45. Yu, P.: Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique. J. Sound Vib. 247, 615–632 (2001)

    Article  MATH  Google Scholar 

  46. Yu, P.: Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dyn. 27, 19–53 (2002)

    Article  MATH  Google Scholar 

  47. Jiang, W., Yuan, Y.: Bogdanov–Takens singularity in van der Pol’s oscillator with delayed feedback. Physica D 227, 149–161 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jiang, W., Wang, H.: Hopf-transcritical bifurcation in retarded functional differential equations. Nonlinear Anal. 73, 3626–3640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ma, S., Lu, Q., Feng, Z.: Double Hopf bifurcation for van der Pol–Duffing oscillator with parametric delay feedback control. J. Math. Anal. Appl. 338, 993–1007 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ding, Y., Jiang, W., Yu, P.: Double Hopf bifurcation in delayed van der Pol–Duffing equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. (accepted)

  51. Faria, T., Magalhães, L.: Normal forms for retarded functional differential equation and applications to Bogdanov-Takens singularity. J. Differ. Equ. 122, 201–224 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (NSFC) and the National Science and Engineering Research Council of Canada (NSERC), the Heilongjiang Provincial Natural Science Foundation (No. A200806), and the Program of Excellent Team in HIT. The first author also acknowledges the financial support received from the China Scholarship Council for her visiting the University of Western Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Ding.

Appendix

Appendix

In this Appendix, we compute the normal form of (22) on center manifold near the Hopf-zero bifurcation critical point (b c ,τ c ) using the center manifold reduction (CMR) method. To achieve this, first re-scale time by \(\tilde{t}\mapsto (t/\tau)\) to normalize the delay so that system (22) becomes

$$ \left \{ \begin{aligned} \dot{y_1}( \tilde{t})&=-\tau y_1(\tilde{t})+\tau a_1y_3( \tilde{t})-\tau a_1by_3(\tilde{t}-1) \\ &\quad {} -\frac{\tau a_1}{3}y_3^3(\tilde{t})+ \frac{\tau a_1b}{3}y_3^3(\tilde{t}-1), \\ \dot{y_2}(\tilde{t})&=-\tau y_2( \tilde{t})+\tau a_2y_1(\tilde{t})-\tau a_2by_1(\tilde{t}-1) \\ &\quad {}-\frac{\tau a_2}{3}y_1^3(\tilde{t}) + \frac{\tau a_2b}{3}y_1^3(\tilde{t}-1), \\ \dot{y_3}(\tilde{t})&=-\tau y_3( \tilde{t})+\tau a_3y_2(\tilde{t})-\tau a_3by_2(\tilde{t}-1) \\ &\quad {}-\frac{\tau a_3}{3}y_2^3(\tilde{t})+ \frac{\tau a_3b}{3}y_2^3(\tilde{t}-1). \end{aligned} \right . $$
(34)

The trivial equilibrium of (34) is y 1=y 2=y 3=0. At the critical point (b,τ)=(b c ,τ c ), we choose

$$ \eta(\theta)= \begin{cases} \tau_cN_1, &\theta=0, \\ 0, &\theta\in(-1,0), \\ -\tau_cN_2, &\theta=-1, \end{cases} $$

with

Then the linearized equation of (34) at the trivial equilibrium can be written as

$$ \frac{\mathrm{d}X(\tilde{t})}{\mathrm{d}\tilde{t}}=L_0X_{\tilde{t}}, $$

where \(L_{0}\phi=\int_{-1}^{0}\,\mathrm{d}\eta(\theta)\phi(\theta)\), ϕ∈C=C([−1,0],R3), and the bilinear form [51] on C×C (∗ stands for adjoint) is

in which ϕ∈C, ψ∈C. Then the phase space C is decomposed by Λ={±iωτ c ,0} as C=PQ, where , and the bases for P and its adjoint P are given respectively by

$$ \varPhi(\theta) =\left (\begin{array}{c@{\quad}c@{\quad}c} e^{\mathrm{i}\omega\tau_c\theta}~& e^{-\mathrm{i}\omega\tau_c\theta} & \frac{1}{2} \\[1mm] \frac{a_2(1-b_ce^{-\mathrm{i}\omega\tau_c})e^{\mathrm{i}\omega\tau_c\theta}}{1+\mathrm{i}\omega} & \frac{a_2(1-b_ce^{\mathrm{i}\omega\tau_c})e^{-\mathrm{i}\omega\tau_c\theta}}{1-\mathrm{i}\omega} & \frac{a_2(1-b_c)}{2} \\[1.5mm] \frac{(1+\mathrm{i}\omega)e^{\mathrm{i}\omega\tau_c\theta}}{a_1(1-b_ce^{-\mathrm{i}\omega\tau_c})} & \frac{(1-\mathrm{i}\omega)e^{-\mathrm{i}\omega\tau_c\theta}}{a_1(1-b_ce^{\mathrm{i}\omega\tau_c})} &\frac{1}{2a_1(1-b_c)} \end{array} \right ) $$

and

$$ \varPsi(s)= \left (\begin{array}{c@{\quad}c@{\quad}c} he^{-\mathrm{i}\omega \tau_cs} & \frac{h(1+\mathrm{i}\omega)e^{-\mathrm{i}\omega\tau_cs}}{a_2(1-b_ce^{-\mathrm{i}\omega\tau_c})} & \frac{a_1h(1-b_ce^{-\mathrm{i}\omega\tau_c})e^{-\mathrm{i}\omega\tau_cs}}{1+\mathrm{i}\omega} \\[2mm] \bar{h}e^{\mathrm{i}\omega \tau_cs} & \frac{\bar{h}(1-\mathrm{i}\omega)e^{\mathrm{i}\omega\tau_cs}}{a_2(1-b_ce^{\mathrm{i}\omega\tau_c})} & \frac{a_1\bar{h}(1-b_ce^{\mathrm{i}\omega\tau_c})e^{\mathrm{i}\omega\tau_cs}}{1-\mathrm{i}\omega} \\[1.5mm] \frac{2}{3(1-\tau_cab_c)} & \frac{2a_1a_3(1-b_c)^2}{3(1-\tau_cab_c)} & \frac{2a_1(1-b_c)}{3(1-\tau_cab_c)} \end{array} \right ), $$

where \(h=(3+\frac{3b_{c}\tau_{c}(1+\mathrm{i}\omega)e^{-\mathrm{i}\omega \tau_{c}}}{b_{c}e^{-\mathrm{i}\omega\tau_{c}}-1})^{-1}\).

We also use the same bifurcation parameters given by b=b c +b ε and τ=τ c +τ ε in (34), where b ε and τ ε are perturbation parameters, and denote ε=(b ε ,τ ε ). Then (34) can be written as

$$ \frac{\mathrm{d}X(\tilde{t})}{\mathrm{d}\tilde{t}} =L(\varepsilon)X_{\tilde{t}}+F(X_{\tilde{t}}, \varepsilon), $$
(35)

where

and

We now consider the enlarged phase space BC of functions from [−1,0] to R3, which are continuous on [−1,0) with a possible jump discontinuity at zero. This space can be identified as C×R3. Thus, its elements can be written in the form \(\tilde{\varphi}=\varphi+X_{0}c\), where φ∈C, c∈R3 and X 0 is a 3×3 matrix-valued function, defined by X 0(θ)=0 for θ∈[−1,0) and X 0(0)=I. In the BC, (35) becomes an abstract ODE,

$$ \frac{\mathrm{d}u}{\mathrm{d}\tilde{t}}=Au+X_0\tilde{F}(u,\varepsilon), $$
(36)

where u∈C, and A is defined by

$$ A:~C^1\rightarrow \mathrm{BC}, Au=\frac{\mathrm{d}u}{\mathrm{d}\tilde{t}} +X_0\biggl[L_0u-\frac{\mathrm{d}u(0)}{\mathrm{d}\tilde{t}}\biggr], $$

and

$$ \tilde{F}(u,\varepsilon)=\bigl[L(\varepsilon)-L_0\bigr]u+F(u, \varepsilon). $$

By using the continuous projection π: BC↦P, π(ϕ+X 0 c)=Φ[(Ψ,ϕ)+Ψ(0)c], we can decompose the enlarged phase space by Λ={±iωτ c ,0} as BC=P⊕Kerπ, where Kerπ={ϕ+X 0 cπ(ϕ+X 0 c)=0}, denoting the Kernel under the projection π. Let \(\eta=(\eta_{1},\bar{\eta}_{1},\eta_{2})^{\mathrm{T}}\), \(v_{\tilde{t}}\in Q^{1} :=Q\cap\mathrm{C}^{1}\subset\mathrm{Ker}^{\pi}\), and \(A_{Q^{1}}\) the restriction of A as an operator from Q 1 to the Banach space Kerπ. Further, denote \(u_{\tilde{t}}=\varPhi \eta+v_{\tilde{t}}\). Then Eq. (36) is decomposed to the form:

$$ \left \{ \begin{aligned} &\frac{\mathrm{d}\eta}{\mathrm{d}\tilde{t}}=B\eta+\varPsi(0)\tilde{F}(\varPhi \eta+v_{\tilde{t}},\varepsilon), \\ &\frac{\mathrm{d}v_{\tilde{t}}}{\mathrm{d}\tilde{t}}=A_{Q^1}v_{\tilde{t}}+(\mathrm{I}- \pi)X_0\tilde{F}(\varPhi\eta+v_{\tilde{t}},\varepsilon), \end{aligned} \right . $$
(37)

where B=diag{iωτ c ,−iωτ c ,0}.

Next, let \(M_{2}^{1}\) denote the operator defined in \(V_{2}^{5}(\mathrm{C}^{3}\times \mathrm{Ker}^{\pi})\), with

where \(V_{2}^{5}(\mathrm{C}^{3})\) represents the linear space of the second-order homogeneous polynomials in five variables \((\eta_{1},\bar{\eta}_{1},\eta_{2},b_{\varepsilon},\tau_{\varepsilon})\) with coefficients in C3. Then we may choose the decomposition \(V_{2}^{5}(\mathrm{C}^{3})= \mathrm{Im}(M_{2}^{1})\oplus\mathrm{Im}(M_{2}^{1})^{c} \) with complementary space \(\mathrm{Im}(M_{2}^{1})^{c}\) spanned by the elements b ε η 1 e 1, τ ε η 1 e 1, η 1 η 2 e 1, \(b_{\varepsilon}\bar{\eta}_{1}e_{2}\), \(\tau_{\varepsilon}\bar{\eta}_{1}e_{2}\), \(\bar{\eta}_{1}\eta_{2}e_{2}\), τ ε η 2 e 3, b ε η 2 e 3, \(\eta_{2}^{2}e_{3}\), \(\eta_{1}\bar{\eta}_{1}e_{3}\), where e i (i=1,2,3) are unit vectors.

Consequently, the normal form of (35) on the center manifold near the equilibrium (0,0,0) associated with the critical point (b ε ,τ ε )=(0,0) has the form

$$\frac{\mathrm{d}\eta}{\mathrm{d}\tilde{t}}=B\eta+\frac{1}{2}g_2^1(\eta,0,\varepsilon)+\mathrm{h.o.t.}, $$

where \(g_{2}^{1}\) is the function giving the quadratic terms in (η,ε) for \(v_{\tilde{t}}=0\), and is determined by \(g_{2}^{1}(\eta,0,\varepsilon)=\mathit{Proj}_{(\mathrm{Im}(M_{2}^{1}))^{c}}\times f_{2}^{1}(\eta,0,\varepsilon)\), where \(f_{2}^{1}(\eta,0,\varepsilon)\) is the function giving the quadratic terms in (η,ε) for \(v_{\tilde{t}}=0\) defined by the first equation of (37). Thus, the normal form, truncated at the quadratic order terms, is given by

$$ \left \{ \begin{aligned} \frac{\mathrm{d}\eta_1}{\mathrm{d}\tilde{t}}&=\mathrm{i}\omega \tau_c\eta_1+3\mathrm{i}\omega h\tau_\varepsilon \eta_1 \\ &\quad {}-\frac{3h\tau_ce^{-\mathrm{i}\omega\tau_c}(1+\mathrm{i}\omega)}{1-b_ce^{-\mathrm{i}\omega\tau_c}}b_\varepsilon\eta_1, \\ \frac{\mathrm{d}\bar{\eta}_1}{\mathrm{d}\tilde{t}}&=-\mathrm{i}\omega\tau_c\bar{\eta}_1-3 \mathrm{i}\omega \bar{h}\tau_\varepsilon\bar{\eta}_1 \\ &\quad {}- \frac{3\bar{h}\tau_ce^{\mathrm{i}\omega\tau_c}(1-\mathrm{i}\omega)}{ 1-b_ce^{\mathrm{i}\omega\tau_c}}b_\varepsilon\bar{\eta}_1, \\ \frac{\mathrm{d}\eta_2}{\mathrm{d}\tilde{t}}&=\frac{a\tau_c}{\tau_cab_c-1}b_\varepsilon\eta_2, \end{aligned} \right . $$
(38)

where \(h=(3+\frac{3b_{c}\tau_{c}(1+\mathrm{i}\omega)e^{-\mathrm{i}\omega \tau_{c}}}{b_{c}e^{-\mathrm{i}\omega\tau_{c}}-1})^{-1}\).

To find the normal form up to third order, similarly, let \(M_{3}^{1}\) denote the operator defined in \(V_{3}^{3}(\mathrm{C}^{3}\times \mathrm{Ker}^{\pi})\), with

where \(V_{3}^{3}(\mathrm{C}^{3})\) denotes the linear space of the third-order homogeneous polynomials in three variables: η 1, \(\bar{\eta}_{1}\), and η 2 with coefficients in C3. Then one may choose the decomposition \(V_{3}^{3}(\mathrm{C}^{3})=\mathrm{Im}(M_{3}^{1})\oplus\mathrm{Im}(M_{3}^{1})^{c} \) with complementary space \(\mathrm{Im}(M_{3}^{1})^{c}\) spanned by the elements \(\eta_{1}\eta_{2}^{2}e_{1}\), \(\eta_{1}^{2}\bar{\eta}_{1}e_{2}\), \(\bar{\eta}_{1}\eta_{2}^{2}e_{2}\), \(\eta_{1}\bar{\eta}_{1}^{2}e_{3}\), \(\eta_{2}^{3}e_{1}\), \(\eta_{1}\bar{\eta}_{1}\eta_{2}e_{3}\), where e i (i=1,2,3) are unit vectors.

Therefore, the normal form up to third-order terms is given by

$$ \frac{\mathrm{d}\eta}{\mathrm{d}\tilde{t}}=B\eta+\frac{1}{2!}g_2^1( \eta,0,\varepsilon) +\frac{1}{3!}g_3^1(\eta,0, \varepsilon)+\mathrm{h.o.t.}, $$
(39)

where

$$\frac{1}{3!}g_3^1(\eta,0,0)=\frac{1}{3!} \bigl(I-P^1_{I,3}\bigr)f_3^1( \eta,0,0), $$

and \(f_{3}^{1}(\eta,0,0)\), is the function giving the cubic terms in \((\eta, \varepsilon, v_{\tilde{t}})\) for ε=0, and \(v_{\tilde{t}}=0\), is defined by the first equation of (37). Finally, the normal form on the center manifold arising from (37) becomes

$$ \left \{ \begin{aligned} & \frac{\mathrm{d}\eta_1}{\mathrm{d}{t}}=\mathrm{i}\omega \eta_1+d_1\eta_1+P_1 \eta_1^2\bar{\eta}_1+ P_2 \eta_1\eta_2^2, \\ & \frac{\mathrm{d}\bar{\eta}_1}{\mathrm{d}{t}}=- \mathrm{i}\omega\bar{\eta}_1+\bar{d}_1\bar{ \eta}_1 +\bar{P}_1\eta_1\bar{ \eta}_1^2+\bar{P}_2\bar{\eta}_1 \eta_2^2, \\ & \frac{\mathrm{d}\eta_2}{\mathrm{d}{t}}=d_2 \eta_2+ P_3\eta_2^3+P_4 \eta_1\bar{\eta}_1\eta_2, \end{aligned} \right . $$
(40)

where d i (i=1,2) and P i (i=1,2,3,4) are given in (31).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Jiang, W. & Yu, P. Hopf-zero bifurcation in a generalized Gopalsamy neural network model. Nonlinear Dyn 70, 1037–1050 (2012). https://doi.org/10.1007/s11071-012-0511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0511-2

Keywords

Navigation