Skip to main content
Log in

Least squares algorithm for an input nonlinear system with a dynamic subspace state space model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For a Hammerstein input nonlinear system with a subspace state space linear element, this paper transforms the system into a bilinear identification model by using the property of the shift operator to the state space model and presents a recursive and an iterative least squares algorithms to generate parameter estimates and state estimates by using the hierarchical identification principle and by replacing the unknown state variables with their estimates. The proposed approaches are computationally more efficient than the over-parameterization model based least squares method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ding, F.: System Identification—New Theory and Methods. Science Press, Beijing (2013)

    Google Scholar 

  2. Rashid, M.T., Frasca, M., Ali, A.A., Ali, R.S., Fortuna, L., Xibilia, M.G.: Nonlinear model identification for Artemia population motion. Nonlinear Dyn. 69(4), 2237–2243 (2012)

    Article  MathSciNet  Google Scholar 

  3. Farjoud, A., Ahmadian, M., Craft, M., Burke, W.: Nonlinear modeling and experimental characterization of hydraulic dampers: effects of shim stack and orifice parameters on damper performance. Nonlinear Dyn. 67(2), 1437–1456 (2012)

    Article  Google Scholar 

  4. Gaite, J.: Nonlinear analysis of spacecraft thermal models. Nonlinear Dyn. 65(3), 283–300 (2011)

    Article  MathSciNet  Google Scholar 

  5. Shams, S., Sadr, M.H., Haddadpour, H.: An efficient method for nonlinear aeroelasticity of slender wings. Nonlinear Dyn. 67(1), 659–681 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding, F., Liu, X.G., Chu, J.: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 7(2), 176–184 (2013)

    Article  MathSciNet  Google Scholar 

  7. Smith, J.G., Kamat, S., Madhavan, K.P.: Modeling of pH process using wavenet based Hammerstein. J. Process Control 17(6), 551–561 (2007)

    Article  Google Scholar 

  8. van der Veen, G.J., van Wingerden, J.W., Fleming, P.A., Scholbrock, A.K., Verhaegen, M.: Global data-driven modeling of wind turbines in the presence of turbulence. Control Eng. Pract. 21(4), 441–454 (2013)

    Article  Google Scholar 

  9. Moon, J., Kim, B.: Enhanced Hammerstein behavioral model for broadband wireless transmitters. IEEE Trans. Microw. Theory Tech. 59(4), 924–933 (2011)

    Article  MathSciNet  Google Scholar 

  10. Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Recursive identification of Hammerstein systems with application to electrically stimulated muscle. Control Eng. Pract. 20(4), 386–396 (2012)

    Article  Google Scholar 

  11. Wang, J., Sano, A., Chen, T., Huang, B.: Identification of Hammerstein systems without explicit parameterization of nonlinearity. Int. J. Control 82(5), 937–952 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, Y., Bai, E.W.: Iterative identification of Hammerstein systems. Automatica 43(2), 346–354 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, J.H.: Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91–96 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding, F., Shi, Y., Chen, T.: Gradient-based identification methods for Hammerstein nonlinear ARMAX models. Nonlinear Dyn. 45(1–2), 31–43 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ding, F., Shi, Y., Chen, T.: Auxiliary model based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 56(5), 373–380 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vanbeylen, L., Pintelon, R., Schoukens, J.: Blind maximum likelihood identification of Hammerstein systems. Automatica 44(12), 3139–3146 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, J., Sano, A., Shook, D., Chen, T., Huang, B.: A blind approach to closed-loop identification of Hammerstein systems. Int. J. Control 80(2), 302–313 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vörös, J.: Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 48(12), 2203–2206 (2003)

    Article  Google Scholar 

  20. Vörös, J.: Identification of nonlinear cascade systems with time-varying backlash. J. Electr. Eng. 62(2), 87–92 (2011)

    Google Scholar 

  21. Wang, D.Q., Chu, Y.Y., Ding, F.: Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems. Comput. Math. Appl. 59(9), 3092–3098 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, D.Q., Chu, Y.Y., Yang, G.W., Ding, F.: Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math. Comput. Model. 52(1–2), 309–317 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, J., Lv, L.X., Ding, R.F.: Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity. Appl. Math. Lett. 26(1), 124–129 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, J.H., Ding, F.: Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique. Comput. Math. Appl. 62(11), 4170–4177 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, J.H., Ding, F., Yang, G.W.: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Model. 55(3–4), 442–450 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, W., Ding, F., Dai, J.Y.: Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Model. 36(5), 1842–1853 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)

    Article  Google Scholar 

  28. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, D.Q., Ding, F.: Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011)

    Article  MATH  Google Scholar 

  30. Ding, F., Gu, Y.: Performance analysis of the auxiliary model based least squares identification algorithm for one-step state delay systems. Int. J. Comput. Math. 89(15), 2019–2028 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ding, F., Gu, Y.: Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state space systems with one-step state delay. Circuits Syst. Signal Process. 32(2), 585–599 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Y.: Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods. Math. Comput. Model. 53(9–10), 1810–1819 (2011)

    Article  MATH  Google Scholar 

  33. Wang, D.Q., Ding, F.: Hierarchical least squares estimation algorithm for Hammerstein–Wiener systems. IEEE Signal Process. Lett. 19(12), 825–828 (2012)

    Article  Google Scholar 

  34. Ding, F.: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Model. 37(4), 1694–1704 (2013)

    Article  MathSciNet  Google Scholar 

  35. Ding, F., Chen, T.: Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom. Control 50(3), 397–402 (2005)

    Article  MathSciNet  Google Scholar 

  36. Ding, F., Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41(2), 315–325 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Dehghan, M., Hajarian, M.: An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Appl. Math. Model. 34(3), 639–654 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Dehghan, M., Hajarian, M.: Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations. Appl. Math. Model. 35(7), 3285–3300 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Dehghan, M., Hajarian, M.: The reflexive and anti-reflexive solutions of a linear matrix equation and systems of matrix equations. Rocky Mt. J. Math. 40(3), 825–848 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Dehghan, M., Hajarian, M.: On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations. Linear Multilinear Algebra 59(11), 1281–1309 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Dehghan, M., Hajarian, M.: The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation AYB+CYTD=E. Math. Methods Appl. Sci. 34(13), 61562-1579 (2011)

    MathSciNet  Google Scholar 

  42. Dehghan, M., Hajarian, M.: Solving the generalized Sylvester matrix equation \(\sum_{i=1}^{p} A_{i}XB_{i}+\sum_{j=1}^{q}C_{j}YD_{j} = E\) over reflexive and anti-reflexive matrices. Int. J. Control. Autom. Syst. 9(1), 118–124 (2011)

    Article  MathSciNet  Google Scholar 

  43. Dehghan, M., Hajarian, M.: Two algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of Sylvester matrix equations. Appl. Math. Lett. 24(4), 444–449 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Dehghan, M., Hajarian, M.: The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A 1 XB 1=C 1 and A 2 XB 2=C 2. Bull. Iran. Math. Soc. 37(3), 269–279 (2011)

    MATH  MathSciNet  Google Scholar 

  45. Dehghan, M., Hajarian, M.: SSHI methods for solving general linear matrix equations. Eng. Comput. 28(8), 1028–1043 (2012)

    Article  Google Scholar 

  46. Dehghan, M., Hajarian, M.: The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices. Int. J. Syst. Sci. 43(8), 1580–1590 (2012)

    Article  MathSciNet  Google Scholar 

  47. Hashemi, B., Dehghan, M.: Efficient computation of enclosures for the exact solvents of a quadratic matrix equation. Electron. J. Linear Algebra 20, 519–536 (2010)

    MATH  MathSciNet  Google Scholar 

  48. Wang, D.Q.: Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648–1657 (2011)

    Article  MathSciNet  Google Scholar 

  49. Ding, F., Liu, G., Liu, X.P.: Parameter estimation with scarce measurements. Automatica 47(8), 1646–1655 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Ding, F., Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(6), 1179–1187 (2005)

    Article  MathSciNet  Google Scholar 

  51. Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  52. Shi, Y., Yu, B.: Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Autom. Control 54(7), 1668–1674 (2009)

    Article  MathSciNet  Google Scholar 

  53. Shi, Y., Yu, B.: Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links. Automatica 47(4), 754–760 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ding, F., Qiu, L., Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica 45(2), 324–332 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  55. Liu, Y.J., Sheng, J., Ding, R.F.: Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems. Comput. Math. Appl. 59(8), 2615–2627 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Ding, F., Liu, Y.J., Bao, B.: Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 226(1), 43–55 (2012)

    Article  Google Scholar 

  57. Ding, F.: Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7(1), 68–79 (2013)

    Article  MathSciNet  Google Scholar 

  58. Ding, F.: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl. Math. Model. 37(7), 4798–4808 (2013)

    Article  MathSciNet  Google Scholar 

  59. Ding, F.: Decomposition based fast least squares algorithm for output error systems. Signal Process. 93(5), 1235–1242 (2013)

    Article  Google Scholar 

  60. Ding, F., Chen, T.: Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  61. Liu, Y.J., Xiao, Y.S., Zhao, X.L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput. 215(4), 1477–1483 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  62. Ding, F.: Several multi-innovation identification methods. Digit. Signal Process. 20(4), 1027–1039 (2010)

    Article  Google Scholar 

  63. Ding, F., Liu, X.P., Liu, G.: Multi-innovation least squares identification for linear and pseudo-linear regression models. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(3), 767–778 (2010)

    Article  Google Scholar 

  64. Hu, P.P., Ding, F.: Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dyn. 73(1–2), 583–592 (2013)

    Article  MathSciNet  Google Scholar 

  65. Han, H.Q., Xie, L., Ding, F., Liu, X.: Hierarchical least squares based iterative identification for multivariable systems with moving average noises. Math. Comput. Model. 51(9–10), 1213–1220 (2010)

    Article  MATH  Google Scholar 

  66. Zhang, Z.N., Ding, F., Liu, X.G.: Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems. Comput. Math. Appl. 61(3), 672–682 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Shandong Provincial Natural Science Foundation (ZR2010FM024), the Shandong Province Higher Educational Science and Technology Program (J10LG12), the Basic Research Project of Qingdao Municipal Science and Technology Program (12-1-4-2-(3)-jch), the National Natural Science Foundation of China (61104001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Ding, F. & Ximei, L. Least squares algorithm for an input nonlinear system with a dynamic subspace state space model. Nonlinear Dyn 75, 49–61 (2014). https://doi.org/10.1007/s11071-013-1048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1048-8

Keywords

Navigation