Skip to main content
Log in

State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the sampled-data state estimation problem is investigated for neural networks with time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled data estimator is constructed. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. New delay-dependent criteria are developed to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulations are given to demonstrate the usefulness and effectiveness of the presented results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chua, L., Yang, L.: Cellular neural networks: theory and applications. IEEE Trans. Circuits Syst. I 35, 1257–1290 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cichoki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. Wiley, Chichester (1993)

    Google Scholar 

  3. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (1998)

    Google Scholar 

  4. Roska, T., Chua, L.O.: Cellular neural networks with nonlinear and delay-type template. Int. J. Circuit Theory Appl. 20, 469–481 (1992)

    Article  MATH  Google Scholar 

  5. Xia, Y., Wang, J.: Global asymptotic and exponential stability of a dynamic neural system with asymmetric connection weights. IEEE Trans. Autom. Control 46, 635–658 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gan, Q.: Adaptive synchronization of stochastic neural networks with mixed time delays and reaction diffusion terms. Nonlinear Dyn. 69, 2207–2219 (2012)

    Article  MATH  Google Scholar 

  7. Hu, S., Wang, J.: Global asymptotic stability and global exponential stability of continuous-time recurrent neural networks. IEEE Trans. Autom. Control 46, 802–807 (2002)

    Google Scholar 

  8. Tian, L., Liang, J., Cao, J.: Robust observer for discrete-time Markovian jumping neural networks with mixed mode-dependent delays. Nonlinear Dyn. 67, 47–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liang, X., Wang, J.: An additive diagonal stability condition for absolute exponential stability of a general class of neural networks. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 1308–1317 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, H., Tao, F., Qin, L., Shi, R., He, L.: Robust exponential stability for interval neural networks with delays and non-Lipschitz activation functions. Nonlinear Dyn. 66, 479–487 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, Z., Ho, D.W.C., Liu, X.: State estimation for delayed neural networks. IEEE Trans. Neural Netw. 16, 279–284 (2005)

    Article  Google Scholar 

  12. Lou, X., Cui, B.: Design of state estimator for uncertain neural networks via the integral-inequality method. Nonlinear Dyn. 53, 223–235 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, H., Feng, G.: A scaling parameter approach to delay-dependent state estimation of delayed neural networks. IEEE Trans. Circuits Syst. II, Express Briefs 57, 36–40 (2010)

    Article  MathSciNet  Google Scholar 

  14. Huang, H., Feng, G.: State estimation of recurrent neural networks with time-varying delay: a novel delay partition approach. Neurocomputing 74, 792–796 (2011)

    Article  Google Scholar 

  15. Park, J.H., Kwon, O.M.: Design of state estimator for neural networks of neutral-type. Appl. Math. Comput. 202, 360–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Park, J.H., Kwon, O.M., Lee, S.M.: State estimation for neural networks of neutral-type with interval time-varying delays. Appl. Math. Comput. 203, 217–223 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Park, J.H., Kwon, O.M.: Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. Math. Comput. 208, 69–75 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, T., Fei, S.M., Zhu, Q.: Design of exponential state estimator for neural networks with distributed delays. Nonlinear Anal., Real World Appl. 10, 1229–1242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ahn, C.K.: Switched exponential state estimation of neural networks based on passivity theory. Nonlinear Dyn. 67, 573–586 (2012)

    Article  MATH  Google Scholar 

  20. Huang, H., Feng, G., Cao, J.: Guaranteed performance state estimation of static neural networks with time-varying delay. Neurocomputing 74, 606–616 (2011)

    Article  Google Scholar 

  21. Balasubramaniam, P., Lakshmanan, S., Jeeva Sathya Theesar, S.: State estimation for Markovian jumping recurrent neural networks with interval time-varying delays. Nonlinear Dyn. 60, 661–675 (2009)

    Article  MathSciNet  Google Scholar 

  22. Chen, Y., Bi, W., Li, W., Wu, Y.: Less conservative results of state estimation for neural networks with time-varying delay. Neurocomputing 73, 1324–1331 (2010)

    Article  Google Scholar 

  23. Wang, H., Song, Q.: State estimation for neural networks with mixed interval time-varying delays. Neurocomputing 73, 1281–1288 (2010)

    Article  MathSciNet  Google Scholar 

  24. Lakshmanan, S., Park, J.H., Ji, D.H., Jung, H.Y., Nagamani, G.: State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. Nonlinear Dyn. 70, 1421–1434 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., Liu, Y., Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw. 22, 41–48 (2009)

    Article  Google Scholar 

  26. Jin, L., Nikiforuk, P.N., Gupta, M.M.: Adaptive control of discrete-time nonlinear systems using recurrent neural networks. IEE Proc., Control Theory Appl. 141, 169–176 (1994)

    Article  MATH  Google Scholar 

  27. Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Syst. Mag. 21, 84–99 (2001)

    Article  Google Scholar 

  28. Lam, H.K., Leung, F.H.F.: Design and stabilization of sampled-data neural-network-based control systems. IEEE Trans. Syst. Man Cybern., B Cybern. 36, 995–1005 (2006)

    Article  Google Scholar 

  29. Naghshtabrizi, P., Hespanha, J., Teel, A.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57, 378–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, X.-L., Wang, Y.: Stabilization for sampled-data neural-network-based control systems. IEEE Trans. Syst. Man Cybern., B Cybern. 41, 210–221 (2011)

    Article  MATH  Google Scholar 

  31. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46, 421–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lam, H.K., Leung, F.H.F.: Sampled-data fuzzy controller for time-delay nonlinear systems: fuzzy-model-based LMI approach. IEEE Trans. Syst. Man Cybern., B Cybern. 37, 617–629 (2007)

    Article  Google Scholar 

  33. Gan, Q., Liang, Y.: Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. J. Franklin Inst. 349, 1955–1971 (2012)

    Article  MathSciNet  Google Scholar 

  34. Zhang, C.K., He, Y., Wu, M.: Exponential synchronization of neural networks with time-varying mixed delays and sampled-data. Neurocomputing 74, 265–273 (2010)

    Article  Google Scholar 

  35. Liu, K., Fridman, E.: Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48, 102–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, Z.-G., Park, J.H., Su, H., Chu, J.: Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data. Nonlinear Dyn. 69, 2021–2030 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, N., Hu, J., Hu, J., Li, L.: Exponential state estimation for delayed recurrent neural networks with sampled-data. Nonlinear Dyn. 69, 555–564 (2012)

    Article  MATH  Google Scholar 

  38. Liu, K., Suplin, V., Fridman, E.: Stability of linear systems with general sawtooth delay. IMA J. Math. Control Inf. 27, 419–436 (2011)

    Article  MathSciNet  Google Scholar 

  39. Gu, K., Kharitonov, V.K., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  40. Zhang, X.M., Han, Q.-L.: Novel delay-derivative-dependent stability criteria using new bounding techniques. Int. J. Robust Nonlinear Control. doi:10.1002/rnc.2829 (2012)

    Google Scholar 

  41. Zhang, D., Yu, L.: \(\mathcal{H}_{\infty}\) filtering for linear neutral systems with mixed time-varying delays and nonlinear perturbations. J. Franklin Inst. 347, 1374–1390 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0009373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju H. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, S., Park, J.H., Rakkiyappan, R. et al. State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach. Nonlinear Dyn 73, 509–520 (2013). https://doi.org/10.1007/s11071-013-0805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0805-z

Keywords

Navigation