Skip to main content

Advertisement

Log in

Design of state estimator for uncertain neural networks via the integral-inequality method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The issue of state estimation is studied for a class of neural networks with norm-bounded parameter uncertainties and time-varying delay. Some new linear matrix inequality (LMI) representations of delay-dependent stability criteria are presented for the existence of the desired estimator for all admissible parametric uncertainties. The proposed method is based on the S-procedure and an extended integral inequality which can be deduced from the well-known Leibniz–Newton formula and Moon’s inequality. The results extend some models reported in the literature and improve conservativeness of those in the case that the derivative of the time-varying delay is assumed to be less than one. Two numerical examples are given to show the effectiveness and superiority of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marcus, C.M., Westervelt, R.M.: Stability of analog neural network with delay. Phys. Rev. A 39, 347–359 (1989)

    Article  MathSciNet  Google Scholar 

  2. Arik, S.: Global asymptotic stability of a larger class of neural networks with constant time delay. Phys. Lett. A 311, 504–511 (2003)

    Article  MATH  Google Scholar 

  3. Cao, J.: Periodic solutions and exponential stability in delayed cellular neural networks. Phys. Rev. E 60(3), 3244–3248 (1999)

    Article  MathSciNet  Google Scholar 

  4. Rong, L.B.: LMI-based criteria for robust stability of Cohen–Grossberg neural networks with delay. Phys. Lett. A 339, 63–73 (2005)

    Article  MATH  Google Scholar 

  5. Singh, V.: Robust stability of cellular neural networks with delay: linear matrix inequality approach. IEE Proc. Control Theory Appl. 151(1), 125–129 (2004)

    Article  Google Scholar 

  6. Ye, H., Michel, A.N., Wang, K.: Qualitative analysis of Cohen–Grossberg neural networks with multiple delays. Phys. Rev. E 51(3), 2611–2618 (1995)

    Article  MathSciNet  Google Scholar 

  7. Cao, J., Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst. I 50(1), 34–44 (2003)

    Article  MathSciNet  Google Scholar 

  8. Li, P., Cao, J.D.: Global stability in switched recurrent neural networks with time-varying delay via nonlinear measure. Nonlinear Dyn. 49(1–2), 295–305 (2007).

    Article  MathSciNet  Google Scholar 

  9. Lou, X.Y., Cui, B.T.: Stochastic exponential stability for Markovian jumping BAM neural networks with time-varying delays. IEEE Trans. Syst. Man Cybern. Part B 37(3), 713–719 (2007)

    Article  Google Scholar 

  10. Yu, W.W.: A LMI-based approach to global asymptotic stability of neural networks with time varying delays. Nonlinear Dyn. 48, 165–174 (2007)

    Article  Google Scholar 

  11. Gao, H.J., Wang, C.H.: A delay-dependent approach to robust hinf filtering for uncertain discrete-time state-delayed systems. IEEE Trans. Signal Process. 52(6), 1631–1640 (2004)

    Article  MathSciNet  Google Scholar 

  12. Gao, H.J., Lam, J., Xie, L.H., Wang, C.H.: New approach to mixed h2/hinf filtering for polytopic discrete-time systems. IEEE Trans. Signal Process. 53(8), 3183–3192 (2005)

    Article  MathSciNet  Google Scholar 

  13. Gao, H.J., Wang, C.H.: A delay-dependent approach to robust H and L2–L filtering for a class of uncertain nonlinear time-delayed systems. IEEE Trans. Autom. Control 48(9), 1661–1666 (2003)

    Article  MathSciNet  Google Scholar 

  14. Gao, H.J., Wang, C.H.: Robust L2–L filtering for uncertain systems with multiple time-varying state delays. IEEE Trans. Circuits Syst. I 50(4), 594–599 (2003)

    Article  MathSciNet  Google Scholar 

  15. Wang, Z.D., Ho, D.W.C., Liu, X.H.: State estimation for delayed neural networks. IEEE Trans. Neural Netw. 16(1), 279–284 (2005)

    Article  Google Scholar 

  16. He, Y., Wang, Q.G., Wu, M., Lin, C.: Delay-dependent state estimation for delayed neural networks. IEEE Trans. Neural Netw. 17(4), 1077–1081 (2006)

    Article  MATH  Google Scholar 

  17. Elanayar, V.T.S., Shin, Y.C.: Approximation and estimation of nonlinear stochastic dynamic systems using radial basis function neural networks. IEEE Trans. Neural Netw. 5(4), 594–603 (1994)

    Article  Google Scholar 

  18. Habtom, R., Litz, L.: Estimation of unmeasured inputs using recurrent neural networks and the extended Kalman filter. In: Proc. Int. Conf. Neural Networks, Houston, TX, vol. 4, pp. 2067–2071 (1997)

  19. Salam, F.M., Zhang, J.: Adaptive neural observer with forward co-state propagation. In: Proc. Int. Joint Conf. Neural Networks (IJCNN’01), Washington, DC, vol. 1, pp. 675–680 (2000)

  20. Arik, S.: Global robust stability of delayed neural networks. IEEE Trans. Circuits Syst. I 50(1), 156–160 (2003)

    Article  MathSciNet  Google Scholar 

  21. Cao, J., Wang, J.: Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans. Circuits Syst. I 52(2), 417–426 (2005)

    Article  MathSciNet  Google Scholar 

  22. Liao, X.F., Yu, J.B.: Robust stability for interval Hopfield neural networks with time delays. IEEE Trans. Neural Netw. 9(5), 1042–1045 (1998)

    Article  Google Scholar 

  23. Singh, V.: A novel global robust stability criterion for neural networks with delay. Phys. Lett. A 337, 369–373 (2005)

    Article  MATH  Google Scholar 

  24. Wang, W., Cao, J.: LMI-based criteria for globally robust stability of delayed Cohen–Grossberg neural networks. IEE Proc. Control Theory Appl. 153(4), 397–402 (2006)

    Article  MathSciNet  Google Scholar 

  25. Zhang, X.M., Wu, M., She, J.H., He, Y.: Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41, 1405–1412 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Han, Q.L.: Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41, 2171–2176 (2005)

    Article  MATH  Google Scholar 

  27. Moon, Y.S., Park, P.G., Kwon, W.H., Lee, Y.S.: Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control 74(14), 1447–1455 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ghaoui, L.E., Oustry, F., Rami, M.A.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42, 1171–1176 (1997)

    Article  MATH  Google Scholar 

  29. Cao, J., Ho, D.W.C., Huang, X.: LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay. Nonlinear Anal. Real World Appl. 66(7), 1558–1572 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Lou, X.Y., Cui, B.T.: New criteria on global exponential stability of BAM neural networks with distributed delays and reaction–diffusion terms. Int. J. Neural Syst. 17(1), 43–52 (2007)

    Article  Google Scholar 

  31. Lou, X.Y., Cui, B.T.: Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays. Fuzzy Sets Syst. 158(24), 2746–2756 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Cao, J., Song, Q.: Stability in Cohen–Grossberg type BAM neural networks with time-varying delays. Nonlinearity 19(7), 1601–1617 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Cao, J., Li, H.X., Han, L.: Novel results concerning global robust stability of delayed neural networks. Nonlinear Anal. Real World Appl. 7(3), 458–469 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyang Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, X., Cui, B. Design of state estimator for uncertain neural networks via the integral-inequality method. Nonlinear Dyn 53, 223–235 (2008). https://doi.org/10.1007/s11071-007-9310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9310-6

Keywords

Navigation