Skip to main content
Log in

A robust-adaptive fuzzy coverage control for robotic swarms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a decentralized adaptive control scheme for multi-robot coverage is proposed. This control method is designed based on centroidal Voronoi configuration integrated with robust adaptive fuzzy control techniques. We consider simple single integrator mobile robots used for covering dynamical environments, where an adaptive fuzzy logic system is used to approximate the unknown parts of control law. A robust coverage criterion is used to attenuate the adaptive fuzzy approximation error and measurement noises to a prescribed level. Therefore, the robots motion is forced to obey solutions of a coverage optimization problem. The advantages of the proposed controller can be listed as robustness to external disturbances, computation uncertainties, and measurement noises, while applicability on dynamical environments. A Lyapunov-function based proof is given of robust stability, i.e. convergence to the optimal positions with bounded error. Finally, simulation results are demonstrated for a swarm coverage problem simultaneous with tracking mobile intruders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roman-Ballesteros, I., Pfeiffer, C.: A framework for cooperative multi-robot surveillance tasks. In: Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico, vol. 2, pp. 163–170 (2006)

    Chapter  Google Scholar 

  2. Schwager, M., Rus, D., Slotine, J.J.: Decentralized, adaptive coverage control for networked robots. Int. J. Robot. Res. 28(3), 357–375 (2009)

    Article  Google Scholar 

  3. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  4. Doyle, J., Glover, K., Khargonekar, P., Francis, B.: State-space solutions to standard h 2 and h control problems. IEEE Trans. Autom. Control 34(1), 831–874 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, B.S., Lee, T., Feng, J.: A nonlinear h control design in robotic systems under parameter perturbation and external disturbance. Int. J. Control 59(2), 439–461 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demir, O., Keskin, I., Cetin, S.: Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn. (2012). doi:10.1007/s11071-011-0135-y

    Google Scholar 

  7. Hu, Q.: Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dyn. 52, 227–248 (2008). doi:10.1007/s11071-007-9274-6

    Article  MATH  Google Scholar 

  8. Wang, C.-C., Yau, H.-T.: Nonlinear dynamic analysis and sliding mode control for a gyroscope system. Nonlinear Dyn. 66, 53–65 (2011). doi:10.1007/s11071-010-9910-4

    Article  MathSciNet  Google Scholar 

  9. Mousavi, S., Ranjbar-Sahraei, B., Noroozi, N.: Output feedback controller for hysteretic time-delayed mimo nonlinear systems. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0204-2

    Google Scholar 

  10. Lin, D., Wang, X., Yao, Y.: Fuzzy neural adaptive tracking control of unknown chaotic systems with input saturation. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0196-y

    Google Scholar 

  11. Chen, B.-S., Lee, C.-H., Chang, Y.-C.: H tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)

    Article  Google Scholar 

  12. Ranjbarsahraei, B., Roopaei, M., Khosravi, S.: Adaptive fuzzy formation control for a swarm of nonholonomic differentially driven vehicles. Nonlinear Dyn. 67(4), 2747–2757 (2011). doi:10.1007/s11071-011-0186-0

    Article  Google Scholar 

  13. Pimenta, L.C.A., Schwager, M., Lindsey, Q., Kumar, V., Rus, D., Mesquita, R.C., Pereira, G.A.S.: Simultaneous coverage and tracking (scat) of moving targets with robot networks. In: Proceedings of the Eighth International Workshop on the Algorithmic Foundations of Robotics (WAFR 08) (2008)

    Google Scholar 

  14. Ranjbar-Sahraei, B., Shabaninia, F., Nemati, A., Stan, S.-D.: A novel robust decentralized adaptive fuzzy control for swarm formation of multi-agent systems. IEEE Trans. Ind. Electron. 99, 1 (2012)

    Google Scholar 

  15. Butler, Z., Rus, D.: Controlling mobile sensors for monitoring events with coverage constraints. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04, New Orleans, LA, vol. 2, pp. 1568–1573 (2004)

    Chapter  Google Scholar 

  16. Bullo, F., Cortes, J., Martinez, S.: In: Distributed Control of Robotic Networks. Applied Mathematics Series (2009). Available at http://www.coordinationbook.info

    Google Scholar 

  17. Breitenmoser, A., Schwager, M., Metzger, J.C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: Proc. of the International Conference on Robotics and Automation (ICRA 10), Anchorage, AK, pp. 4982–4989 (2010)

    Google Scholar 

  18. Delle Fave, F., Canu, S., Iocchi, L., Nardi, D., Ziparo, V.: Multi-objective multi-robot surveillance. In: Autonomous Robots and Agents. 4th International Conference on ICARA 2009, Wellington, New Zealand, pp. 68–73 (2009)

    Google Scholar 

  19. Kolling, A., Carpin, S.: Multi-robot surveillance: an improved algorithm for the graph-clear problem. In: Robotics and Automation. IEEE International Conference on ICRA 2008, Pasadena, CA, pp. 2360–2365 (2008)

    Google Scholar 

  20. Schwager, M., Rus, D., Slotine, J.J.: Unifying geometric, probabilistic, and potential field approaches to multi-robot deployment. Int. J. Robot. Res. 30(3), 371–383 (2011)

    Article  Google Scholar 

  21. Schwager, M., McLurkin, J., Slotine, J.J.E., Rus, D.: From theory to practice: distributed coverage control experiments with groups of robots. In: Experimental Robotics: The Eleventh International Symposium, vol. 54, pp. 127–136. Springer, Berlin (2008)

    Google Scholar 

  22. Schwager, M., Michael, N., Kumar, V., Rus, D.: Time scales and stability in networked multi-robot systems. In: Proc. of the International Conference on Robotics and Automation (ICRA 11), Shanghai, China (2011)

    Google Scholar 

  23. Schwager, M., Slotine, J.J.E., Rus, D.: Decentralized, adaptive control for coverage with networked robots. In: Proceedings of the International Conference on Robotics and Automation (ICRA 07), Roma, Italy, pp. 3289–3294 (2007)

    Chapter  Google Scholar 

  24. Sahraei, B.R., Shabaninia, F.: A robust H control design for swarm formation control of multi-agent systems: A decentralized adaptive fuzzy approach. In: 3rd International Symposium on Resilient Control Systems (ISRCS10), Idaho Falls, ID, pp. 79–84 (2010)

    Chapter  Google Scholar 

  25. Wang, L.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Khosravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahangir, M., Khosravi, S. & Afkhami, H. A robust-adaptive fuzzy coverage control for robotic swarms. Nonlinear Dyn 69, 1191–1201 (2012). https://doi.org/10.1007/s11071-012-0340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0340-3

Keywords

Navigation