Skip to main content

Advertisement

Log in

A review of the literature on fuzzy-logic approaches for collision-free path planning of manipulator robots

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In recent years, a large number of manipulator robots have been deployed to replace or assist humans in many repetitive and dangerous tasks. Yet, these robots have complex mechanisms, resulting in their non-linearity of kinematics and dynamics as well as intensive computations. Therefore, relying on soft computing techniques are a common and alternative key to model and control these systems. In particular, fuzzy logic approaches have proven to be simple, efficient, and superior to relevant well-known methods and have sparked greater interest in robotic applications. To help researchers meet their needs easily and quickly in finding relevant research works on fuzzy-based solutions, this article adapted to provide an in-depth review of the currently updated fuzzy logic approaches for collision-free path planning of serial manipulator robots operating in complex and cluttered workspaces. In addition to a comprehensive description of fuzzy hybridization with other artificial intelligence techniques description. Further, this article attempts to present the main solutions with a summary and visualization of all basic approaches that path-planning problems may subtend in the decision-making process. Finally, the paper suggests some potential challenges and explores research issues for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas M, Narayan J, Dwivedy SK (2019) Simulation analysis for trajectory tracking control of 5-DOFs robotic arm using ANFIS approach. In: 2019 5th International Conference on Computing, Communication, Control and Automation (ICCUBEA), pp. 1–6. IEEE

  • Abpeykar S, Ghatee M (2014) Supervised and unsupervised learning dss for incident management in intelligent tunnel: A case study in tehran niayesh tunnel. Tunn Undergr Space Technol 42:293–306

    Article  Google Scholar 

  • Abu-Dakka FJ, Assad IF, Alkhdour RM, Abderahim M (2017) Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots. J Adv Manuf Technol 89(1–4):389–406

    Article  Google Scholar 

  • Abu-Dakka FJ, Rubio F, Valero F, Mata V (2013) Evolutionary indirect approach to solving trajectory planning problem for industrial robots operating in workspaces with obstacles. European Journal of Mechanics-A/Solids 42:210–218

    Article  Google Scholar 

  • Abu-Dakka FJM (2011) Trajectory planning for industrial robot using genetic algorithms. PhD thesis, Universitat Politècnica de València

  • Agarwal V (2012) Trajectory planning of redundant manipulator using fuzzy clustering method. Int J Adv Manuf Technol 61(5–8):727–744

    Article  Google Scholar 

  • Aghajarian M, Kiani K (2011) Inverse kinematics solution of PUMA 560 robot arm using ANFIS. In: 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 574–578. IEEE

  • Ahmad MA, Nasir ANK, Hambali N, Ishak H (2008) Vibration and input tracking control of flexible manipulator using hybrid fuzzy logic controller. In: 2008 IEEE International Conference on Mechatronics and Automation, pp. 593–598. IEEE

  • Ahmad MA, Ismail RR, Ramli M, Zawawi MA, Suid MH (2010) Vibration control strategy for flexible joint manipulator: a fuzzy logic control approach. In: 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA), pp. 469–474. IEEE

  • Ahmed SU, Malik UA, Iqbal M, Kunwar F (2013) A guided autowave pcnn for improved real time path planning. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE

  • Ahrikencheikh C, Seireg AA (1994) Optimized-motion planning: theory and implementation. Wiley, New Jersey

    Google Scholar 

  • Ahson SI, Sharkey NE, Nicolas B (1996) Avoiding joint limits and obstacles for kinematically redundant manipulators: a fuzzy-logic based approach. In: Proceedings of The 5th International Fuzzy Systems, vol 3, pp 1777–1781. IEEE

  • Al-Dois H, Jha A, Mishra R (2014) GA-based control of a robot manipulator in a foundry workcell. In: Asia-Pacific World Congress on Computer Science and Engineering, pp 1–8. IEEE

  • Alavandar S, Nigam M (2008) Inverse kinematics solution of 3-DOF planar robot using ANFIS. Int J Comput Commun Control 3:150–155

    Google Scholar 

  • Althoefer K, Seneviratne LD, Zavlangas P, Krekelberg B (1998) Fuzzy navigation for robotic manipulators. Internat J Uncertain Fuzziness Knowledge-Based Systems 6(02):179–188

    Article  MATH  Google Scholar 

  • Althoefer KA (1997) Neuro-fuzzy motion planning for robotic manipulators. PhD thesis, King’s College London, University of London, UK

  • Álvarez D, Gómez JV, Garrido S, Moreno L (2015) Geometrically constrained path planning with fast marching square. In: 2015 23rd Mediterranean Conference on Control and Automation (MED), pp 1014–1019. IEEE

  • Amouri A, Mahfoudi C, Zaatri A, Lakhal O, Merzouki R (2017) A metaheuristic approach to solve inverse kinematics of continuum manipulators. Proc Inst Mech Eng Part I 231(5):380–394

    Google Scholar 

  • Angeles J (2014) Fundamentals of robotic mechanical systems: theory, methods, and algorithms. Springer, Switzerland, p 589

    Book  MATH  Google Scholar 

  • Arismendi Gutiérrez CA (2015) Dexterous robotic motion planning using intelligent algorithms. PhD thesis, Universidad Carlos III de Madrid, Departamento de Ingenieria de Sistemas y Automatica

  • Aseri NAM, Ismail MA, Fakharudin AS, Ibrahim AO (2020) Review of the meta-heuristic algorithms for fuzzy modeling in the classification problem. Int J Adv Trends Comput Sci Eng 9(1.4)

  • Attaviriyanupap P, Kita H, Tanaka E, Hasegawa J (2004) A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties. IEEE Trans Power Syst 19(3):1299–1307

    Article  Google Scholar 

  • Ayawli BBK, Chellali R, Appiah AY, Kyeremeh F (2018) An overview of nature-inspired, conventional, and hybrid methods of autonomous vehicle path planning. J Adv Transp 2018:1–27

    Article  Google Scholar 

  • Bagchi A, Hatwal H (1992) Fuzzy logic-based techniques for motion planning of a robot manipulator amongst unknown moving obstacles. Robotica 10(6):563–574

    Article  Google Scholar 

  • Baklouti N, Lamti HA, Salhi K, Alimi AM (2013) PSO-based adaptive learning fuzzy logic controller for the irobot create robot. In: 13th International Conference on Hybrid Intelligent Systems (HIS 2013), pp 99–104. IEEE

  • Balch T (1993) Avoiding the past: A simple but effective strategy for reactive navigation. In: [1993] Proceedings IEEE International Conference on Robotics and Automation, pp 678–685. IEEE

  • Banga VK (2011) Performance improvement in robotic arm movement using fuzzy and genetic algorithms. PhD thesis, Thapar University, India

  • Barraquand J, Kavraki L, Latombe J-C, Motwani R, Li T-Y, Raghavan P (1997) A random sampling scheme for path planning. Int J Robot Res 16(6):759–774

    Article  Google Scholar 

  • Beata J (2018) Fuzzy logic controller for robot manipulator control system. In: 2018 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE), pp 77–80. IEEE

  • Beheshti M, Tehrani A (1999) Obstacle avoidance for kinematically redundant robots using an adaptive fuzzy logic algorithm. In: Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), vol 2, pp 1371–1375. IEEE

  • Beltran EP, Diwa AAS, Gales BTB, Perez CE, Saguisag CAA, Serrano KKD (2018) Fuzzy logic-based risk estimation for safe collaborative robots. In: 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp 1–5. IEEE

  • Bernal M, Guerra TM, Kruszewski A (2009) A membership-function-dependent approach for stability analysis and controller synthesis of takagi-sugeno models. Fuzzy Sets Syst 160(19):2776–2795

    Article  MathSciNet  MATH  Google Scholar 

  • Bertram D, Kuffner J, Dillmann R, Asfour T (2006) An integrated approach to inverse kinematics and path planning for redundant manipulators. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp 1874–1879. IEEE

  • Bhatia A, Kavraki LE, Vardi MY (2010) Sampling-based motion planning with temporal goals. In: 2010 IEEE International Conference on Robotics and Automation, pp 2689–2696. IEEE

  • Bhatia V, Kalaichelvi V, Karthikeyan R (2015) Application of a novel fuzzy logic controller for a 5-DOF articulated anthropomorphic robot. In: 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp 208–213. IEEE

  • Biglarbegian M, Melek WW, Mendel JM (2010) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans Ind Electron 58(4):1371–1384

    Article  Google Scholar 

  • Bingul Z, Karahan O (2012) Dynamic modeling and simulation of stewart platform. In: Serial and Parallel Robot Manipulators - Kinematics, Dynamics, Control and Optimization, pp 19–42. Intech Open Access Publisher, London, UK. Chap. 2

  • Bingül Z, Karahan O (2011) A fuzzy logic controller tuned with PSO for 2-DOF robot trajectory control. Expert Syst Appl 38(1):1017–1031

    Article  Google Scholar 

  • Blackmore L, Williams B (2006) Optimal manipulator path planning with obstacles using disjunctive programming. In: 2006 American Control Conference, p. 3. IEEE

  • Blanco JL, Bellone M, Gimenez-Fernandez A (2015) TP-space RRT-kinematic path planning of non-holonomic any-shape vehicles. Int J Adv Rob Syst 12(5):55

    Article  Google Scholar 

  • Botsali FM, Tinkir M, Kalyoncu M, Önen Ü (2010) Fuzzy logic trajectory control of flexible robot manipulator with rotating prismatic joint. In: 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), vol 3, pp 35–39. IEEE

  • Bouchiba F, Nouibat W (2015) Neuro-fuzzy navigation of a mobile robot in an unknown environment. Int Rev Autom Control 8(3):220–227

    Google Scholar 

  • Brooks RA (1983) Solving the find-path problem by good representation of free space. IEEE Trans Syst Man Cybern 2:190–197

    Article  MathSciNet  Google Scholar 

  • Brooks RA, Lozano-Perez T (1985) A subdivision algorithm in configuration space for findpath with rotation. IEEE Trans Syst Man Cybern 2:224–233

    Article  Google Scholar 

  • Brooks RA (1992) Artificial life and real robots. In: Proceedings of The 1st European Conference on Artificial Life, pp. 3–10

  • Budiharto W (2015) Intelligent surveillance robot with obstacle avoidance capabilities using neural network. Computational intelligence and neuroscience (2015)

  • Bueno-López M, Arteaga-Pérez MA (2011) Fuzzy logic control of a robot manipulator in 3D based on visual servoing. IFAC Proc Vol 44(1):14578–14583

    Article  Google Scholar 

  • Bulgakov AG, Raheem FA (2008) Fuzzy logic structure for on-line control of robot manipulator in unknown environment. In: Prospects in Mechanical Engineering: Proceedings; 53. IWK, Internationales Wissenschaftliches Kolloquium, 8–12 September 2008, vol. 53

  • Cai K, Wang C, Cheng J, De Silva CW, Meng MQ-H (2020) Mobile robot path planning in dynamic environments: A survey. arXiv preprint arXiv:2006.14195

  • Campos L, Bourbonnais F, Bonev IA, Bigras P (2010) Development of a five-bar parallel robot with large workspace. In: The 34th Annual Mechanisms and Robotics Conference, Parts A and B, vol 2. Montreal, Canada, pp 917–922

  • Canny J (1988) The complexity of robot motion planning. MIT Press, Cambridge, England

    MATH  Google Scholar 

  • Canny J, Donald B (1990) Simplified voronoi diagrams. In: Autonomous Robot Vehicles, pp. 272–289. Springer, New York

  • Canny J, Reif J (1987) Lower bounds for shortest path and related problems. In: Proceedings of The 28th IEEE Annual Symposium on Foundations of Computer Science (FOCS), vol. 49, p. 60. IEEE

  • Canny JF (1989) On computability of fine motion plans. In: Proceedings 1989 IEEE International Conference on Robotics and Automation, 1989. ICRA 1989, pp. 177–182. IEEE

  • Castillo O, Melin P (2003) Soft computing and fractal theory for intelligent manufacturing, vol 117. Springer, New York

    MATH  Google Scholar 

  • Castillo O, Melin P (2012) A review on the design and optimization of interval type-2 fuzzy controllers. Appl Soft Comput 12(4):1267–1278

    Article  Google Scholar 

  • Castillo O, Melin P (2014) A review on interval type-2 fuzzy logic applications in intelligent control. Inf Sci 279:615–631

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo O, Melin P, Kacprzyk J, Pedrycz W (2007) Type-2 fuzzy logic: theory and applications. In: 2007 IEEE International Conference on Granular Computing (GRC 2007), pp 145–145. IEEE

  • De Castro LN, Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, UK

    MATH  Google Scholar 

  • Chan K, Zalzala A (1993) Genetic-based minimum-time trajectory planning of articulated manipulators with torque constraints. In: IEE Colloquium on Genetic Algorithms for Control Systems Engineering, pp 4–1. IET

  • Chang C-W, Lee H-W, Liu C-H (2018) A review of artificial intelligence algorithms used for smart machine tools. Inventions 3(3):41

    Article  Google Scholar 

  • Chang J-W, Wang R-J, Wang W-J, Huang C-H (2015) Implementation of an object-grasping robot arm using stereo vision measurement and fuzzy control. Int J Fuzzy Syst 17(2):193–205

    Article  Google Scholar 

  • Chatterjee A, Pulasinghe K, Watanabe K, Izumi K (2005) A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems. IEEE Trans Ind Electron 52(6):1478–1489

    Article  Google Scholar 

  • Chatti N, Chatti A (2010) Robust adaptive fuzzy control and strategy of avoidance of obstacles for a manipulator arm to serve the people disabilities. IFAC Proc Vol 43(8):402–409

    Article  Google Scholar 

  • Chaumette F, Hutchinson S, Corke P (2016) Visual servoing. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, Heidelberg, pp 841–866

    Chapter  Google Scholar 

  • Chazelle B (1985) Approximation and decomposition of shapes. Algorith Geom Aspects Robot 1:145–185

    MathSciNet  Google Scholar 

  • Chazelle B, Dobkin D (1979) Decomposing a polygon into its convex parts. In: Proceedings of The 11th Annual ACM Symposium on Theory of Computing, pp. 38–48

  • Chazelle B, Dobkin DP (1985) Optimal convex decompositions. Machine Intelligence and Pattern Recognition, vol 2. Computational Geometry. Elsevier, The Netherlands, pp 63–133

  • Chen Z, Li Z, Chen CP (2016) Disturbance observer-based fuzzy control of uncertain mimo mechanical systems with input nonlinearities and its application to robotic exoskeleton. IEEE Trans Cybernetics 47(4):984–994

    Article  Google Scholar 

  • Chen G, Liu D, Wang Y, Jia Q, Zhang X (2018) Path planning method with obstacle avoidance for manipulators in dynamic environment. Int J Adv Rob Syst 15(6):1729881418820223

    Google Scholar 

  • Chen X, Zhang Y, Xie J, Du P, Chen L (2018) Robot needle-punching path planning for complex surface preforms. Robot Comput Integr Manuf 52:24–34

    Article  Google Scholar 

  • Chen Y, Wang Y, Yu X (2012) Obstacle avoidance path planning strategy for robot arm based on fuzzy logic. In: 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), pp 1648–1653. IEEE

  • Chen Y, Wang Y, Miao Z (2013) Fuzzy-based trajectory planning for de-icing robot on high voltage transmission lines. In: 2013 Chinese Automation Congress, pp. 23–28. IEEE

  • Chen Z, Ma L, Shao Z (2019) Path planning for obstacle avoidance of manipulators based on improved artificial potential field. In: 2019 Chinese Automation Congress (CAC), pp 2991–2996. IEEE

  • Cheng H, Cheng H-D (1996) Feasible map algorithm for path planning. Robot Auton Syst 17(3):149–170

    Article  Google Scholar 

  • Chettibi T, Haddad M, Rebai S, Hentout A (2006) A stochastic off line planner of optimal dynamic motions for robotic manipulators. Informatics in Control. Automation and Robotics I. Springer, The Netherlands, pp 73–80

  • Chetty RK, Ponnambalam S (2012) A heuristic approach towards path planning and obstacle avoidance control of planar manipulator. In: International Conference on Intelligent Robotics, Automation, and Manufacturing, pp 1–11. Springer

  • Chiang H-T, Malone N, Lesser K, Oishi M, Tapia L (2015) Aggressive moving obstacle avoidance using a stochastic reachable set based potential field. In: Algorithmic Foundations of Robotics XI vol. 107, pp. 73–89. Springer, Switzerland

  • Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278

    Article  Google Scholar 

  • Cho W-J, Kwon D-S (1996) A sensor-based obstacle avoidance for a redundant manipulator using a velocity potential function. In: Proceedings of The 5th IEEE International Workshop on Robot and Human Communication (RO-MAN’96), pp 306–310. IEEE

  • Chongistitvatana P, Polvichai J (1996) Learning a visual task by genetic programming. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96, vol 2, pp 534–540. IEEE

  • Chongstitvatana P (1998) Improving robustness of robot programs generated by genetic programming for dynamic environments. In: IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No. 98EX242), pp 523–526. IEEE

  • Choset H, Henning W (1999) A follow-the-leader approach to serpentine robot motion planning. J Aerosp Eng 12(2):65–73

    Article  Google Scholar 

  • Choset HM, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrun S, Arkin RC (2005) Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge, England

    MATH  Google Scholar 

  • Chuang J-H (1998) Potential-based modeling of three-dimensional workspace for obstacle avoidance. IEEE Trans Robot Autom 14(5):778–785

    Article  Google Scholar 

  • Chuang J-H, Ahuja N (1998) An analytically tractable potential field model of free space and its application in obstacle avoidance. IEEE Trans Systems, Man, and Cybernetics, Part B (Cybernetics) 28(5):729–736

  • Chyan GS, Ponnambalam S (2012) Obstacle avoidance control of redundant robots using variants of particle swarm optimization. Robotics and Computer-Integrated Manufacturing 28(2):147–153

    Google Scholar 

  • Colle E, Nait-Chabane K, Delarue S, Hoppenot P (2006) Arph: Comparison of a classical method and a method using man-machine collaboration to exploit the redundancy of the robotized assistant. AMSE 67:1–11

    Google Scholar 

  • Conkur ES, Buckingham R (1997) Manoeuvring highly redundant manipulators. Robotica 15(4):435–447

    Article  Google Scholar 

  • Cramer NL (1985) A representation for the adaptive generation of simple sequential programs. In: Proceedings of The International Conference on Genetic Algorithms and Their Applications, pp. 183–187

  • Csiszar A (2017) Online path planning for industrial robots with integrated workspace limits and safety criterion. PhD thesis, Faculty of Construction, Production and Vehicle Technology, University of Stuttgart

  • Daachi B, Benallegue A (2006) A neural network adaptive controller for end-effector tracking of redundant robot manipulators. Journal of Intelligent & Robotic Systems 46(3):245–262

    Article  Google Scholar 

  • Dai Y, Zhao M (2015) Application of fuzzy ant colony algorithm to robotics arm avoiding obstacle path-planning problem. J Comput Theor Nanosci 12(12):5976–5983

    Article  Google Scholar 

  • Davis D, Supriya P (2016) Implementation of fuzzy-based robotic path planning. In: Proceedings of The 2nd International Conference on Computer and Communication Technologies, pp. 375–383. Springer

  • Davoodalhosseini A, Behbahani S (2015) Safe simulation of the manipulator in the presence of static and dynamic obstacles by using fuzzy system. Mechanics, Materials Science & Engineering Journal, 125–134

  • Dayan P, Watkins C (1992) Q-learning. Mach Learn 8(3):279–292

    MATH  Google Scholar 

  • Demirli K, Cheng S, Muthukumaran P (2003) Subtractive clustering based modeling of job sequencing with parametric search. Fuzzy Sets Syst 137(2):235–270

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y, Chen Y, Zhang Y, Mahadevan S (2012) Fuzzy dijkstra algorithm for shortest path problem under uncertain environment. Appl Soft Comput 12(3):1231–1237

    Article  Google Scholar 

  • Dewi T, Nurmaini S, Risma P, Oktarina Y, Roriz M (2020) Inverse kinematic analysis of 4-DOF pick and place arm robot manipulator using fuzzy logic controller. International Journal of Electrical & Computer Engineering (IJECE) 10(2):1376–1386

    Article  Google Scholar 

  • De Silva CW, Chung C, Lawrence C (1988) Base reaction optimization of robotic manipulators for space applications. In: The 19th International Symposium on Industrial Robots, pp. 829–852. IEEE, Sydney, Australia

  • de Silva CW (1995) Applications of fuzzy logic in the control of robotic manipulators. Fuzzy Sets Syst 70(2–3):223–234

    Article  Google Scholar 

  • Dhyani A, Panda MK, Jha B (2020) Design of an evolving fuzzy-PID controller for optimal trajectory control of a 7-DOF redundant manipulator with prioritized sub-tasks. Expert Syst Appl 162:113021

    Article  Google Scholar 

  • Dimeas F, Avendaño-Valencia LD, Aspragathos NA (2015) Human-robot collision detection and identification based on fuzzy and time series modelling. Robotica 33(9):1886–1898

    Article  Google Scholar 

  • Dimeas F, Avendano-Valencia L, Nasiopoulou E, Aspragathos N (2013) Robot collision detection based on fuzzy identification and time series modelling. In: Proceedings of the 22nd International Workshop on Robotics in Alpe-Adria-Danube Region, pp. 11–13

  • Ding H, Li H (1999) Fuzzy avoidance control strategy for redundant manipulators. Eng Appl Artif Intell 12(4):513–521

    Article  Google Scholar 

  • Dittrich F, Woern H (2015) Processing tracking quality estimations in a mixed local-global risk model for safe human robot collaboration. In: Austrian Robotics Workshop (AWR2015), pp. 55–56

  • Dorigo M (1995) Alecsys and the autonomouse: Learning to control a real robot by distributed classifier systems. Mach Learn 19(3):209–240

    Article  Google Scholar 

  • Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26(1):29–41

  • Duffy BR (2003) Anthropomorphism and the social robot. Robot Auton Syst 42(3–4):177–190

    Article  MATH  Google Scholar 

  • Ehlert PA (1999) The use of artificial intelligence in autonomous mobile robots. Technical report, Faculty Information Technology and Systems, Delft University of Technology, The Netherlands

  • Eldukhri EE, Pham DT (2010) Autonomous swing-up control of a three-link robot gymnast. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 224(7):825–832

    Google Scholar 

  • Elkari B, Ayad H, Abdeljalil EK, Mjahed M (2017) A new approach of fusion behavior-based fuzzy control for mobile robot navigation. International Review of Automatic Control 10(1):13

    Article  Google Scholar 

  • Escande A, Mansard N, Wieber P-B (2010) Fast resolution of hierarchized inverse kinematics with inequality constraints. In: 2010 IEEE International Conference on Robotics and Automation, pp 3733–3738. IEEE

  • Fahimi F (2009) Autonomous Robots, Modelling. Path Planning and Control. Springer, New York

    Book  Google Scholar 

  • Faraj MA, Abbood AM (2021) Fractional order PID controller tuned by bat algorithm for robot trajectory control. Indonesian Journal of Electrical Engineering and Computer Science 21(1):74–83

    Article  Google Scholar 

  • Farnebäck G (2003) Two-frame motion estimation based on polynomial expansion. In: Scandinavian Conference on Image Analysis, pp. 363–370. Springer

  • Ferguson D, Stentz A (2006) Using interpolation to improve path planning: The field d* algorithm. Journal of Field Robotics 23(2):79–101

    Article  MATH  Google Scholar 

  • Fong T, Thorpe C (2001) Vehicle teleoperation interfaces. Auton Robot 11(1):9–18

    Article  MATH  Google Scholar 

  • Foo JL, Knutzon J, Kalivarapu V, Oliver J, Winer E (2009) Path planning of unmanned aerial vehicles using b-splines and particle swarm optimization. J Aerosp Comput Inf Commun 6(4):271–290

    Article  Google Scholar 

  • Fragkopoulos C (2014) Automatic motion of manipulator using sampling based motion planning algorithms-application in service robotics. PhD thesis, Staats-und Universitätsbibliothek Bremen

  • Franks J, Chang Y-C, Yamamoto Y (2008) On-line path planning strategy integrated with collision and dead-lock avoidance schemes for wheeled mobile robot in indoor environments. Industrial Robot: An International Journal

  • Fu Y-l, Jin B, Li H, Wang S-g (2006) A robot fuzzy motion planning approach in unknown environments. Frontiers of Mechanical Engineering in China 1(3):336–340

  • Fujiko C, Dickinson J (1987) Using the genetic algorithm to generate lisp source code to solve the prisoner’s dilemma. In: Proceedings of The International Conference on Genetic Algorithms and Their Applications, pp. 236–240

  • Galceran E, Carreras M (2013) A survey on coverage path planning for robotics. Robot Auton Syst 61(12):1258–1276

    Article  Google Scholar 

  • Gao H, Lu S, Wang T (2020) Motion path planning of 6-DOF industrial robot based on fuzzy control algorithm. Journal of Intelligent & Fuzzy Systems 38(4):3773–3782

    Article  Google Scholar 

  • Gao X, Mu Y, Gao Y (2016) Optimal trajectory planning for robotic manipulators using improved teaching-learning-based optimization algorithm. Industrial Robot: An International Journal 43(3):308–316

    Article  Google Scholar 

  • Garg V, Tiwari R (2016) A chronological review of the approaches used for multi-robot navigation. In: International Conference on Recent Trends in Engineering, Science & Technology (ICRTEST 2016), pp. 1–8. IET

  • Gemeinder M, Gerke M (2003) GA-based path planning for mobile robot systems employing an active search algorithm. Appl Soft Comput 3(2):149–158

    Article  Google Scholar 

  • Ghandi S, Masehian E (2015) Review and taxonomies of assembly and disassembly path planning problems and approaches. Comput Aided Des 67–68(2015):58–86

    Article  Google Scholar 

  • Gigras Y, Jora N, Dhull A (2016) Comparison between different meta-heuristic algorithms for path planning in robotics. International Journal of Computer Applications 142(3):6–10

    Article  Google Scholar 

  • Giorelli M, Renda F, Ferri G, Laschi C (2013) A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5033–5039. IEEE

  • Godjevac J (1995) Comparative study of fuzzy control, neural network control and neuro-fuzzy control. Fuzzy Set Theory and Advanced Mathematical Applications, vol 4. International Series in Intelligent Technologies. Springer, Boston, pp 291–322

  • Gorial II (2015) Redundant three-link robot manipulator local approach. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) 10(2):81–88

  • Gorial II (2015) Online planning system for serial manipulator multi links. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) 10(4):08–14

  • Graf J, Czapiewski P, Wörn H (2010) Evaluating risk estimation methods and path planning for safe human-robot cooperation. In: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–7. IEEE

  • Graf J, Puls S, Wörn H (2009) Incorporating novel path planning method into cognitive vision system for safe human-robot interaction. In: 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, pp. 443–447. IEEE

  • Graham JH (1987) Computer Architecture for Robotics and Automation. Gordon and Breach Science Publishers Inc., New York

    Google Scholar 

  • Gul F, Rahiman W, Alhady SSN (2019) A comprehensive study for robot navigation techniques. Cogent Eng 6(1):1632046

    Article  Google Scholar 

  • Guo W, Li R, Zhu Y, Yang T, Qin R, Hu Z (2019) A robotic deburring methodology for tool path planning and process parameter control of a five-degree-of-freedom robot manipulator. Appl Sci 9(10):2033

    Article  Google Scholar 

  • Guo D, Zhang Y (2014) Acceleration-level inequality-based man scheme for obstacle avoidance of redundant robot manipulators. IEEE Trans Industr Electron 61(12):6903–6914

    Article  Google Scholar 

  • Guo D, Zhang Y (2012) A new inequality-based obstacle-avoidance mvn scheme and its application to redundant robot manipulators. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42(6):1326–1340

  • Gupta K, Pobil AP (1998) Practical Motion Planning in Robotics: Current Approaches and Future Directions. John Wiley & Sons Inc, New Jersey

    MATH  Google Scholar 

  • Hagras H, Sobh T (2002) Intelligent learning and control of autonomous robotic agents operating in unstructured environments. Inf Sci 145(1–2):1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Han H-s-a-q-e, Han C-Y, Xu Z-B, Zhu M-C, Yu Y, Wu Q-W (2019) Kinematics analysis and testing of novel 6-p-rr-r-rr parallel platform with offset rr-joints. Proc Inst Mech Eng Part C 233(10):3512–3530

  • Harish A, Chandrashekhar A, Satish Babu G (2018) Path planning of a parallel manipulator using A* algorithm. International Journal of Management, Technology And Engineering 8(X):1387–1392

  • Haykin S (2009) Neural Networks and Learning Machines, 3rd edn. Prentice Hall, New York

    Google Scholar 

  • He J, Luo M, Xu L, Zhao J, Li T (2015) Adaptive fuzzy sliding mode controller for end-effector tracking of redundant manipulators. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2401–2406. IEEE

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407(6803):487–490

    Article  Google Scholar 

  • Hentout A, Aouache M, Maoudj A, Akli I (2019) Human-robot interaction in industrial collaborative robotics: A literature review of the decade 2008–2017. Adv Robot 33(15–16):764–799

    Article  Google Scholar 

  • Hentout A, Maoudj A, Yahiaoui D, Aouache M (2019) RRT-A*-BT approach for optimal collision-free path planning for mobile robots. Algerian Journal of Signals and Systems 4(2):39–50

    Article  Google Scholar 

  • Hentout A, Messous MA, Bouzouia B (2015) Fault-tolerant multi-agent control architecture for autonomous mobile manipulators: Simulation results. Comput Electr Eng 43:238–256

    Article  Google Scholar 

  • Hentout A, Bouzouia B, Akli I, Toumi R (2010) Mobile manipulation: A case study. Robot manipulators, new achievements, 145–167

  • Hentout A, Messous MA, Oukid S, Bouzouia B (2013) Multi-agent fuzzy-based control architecture for autonomous mobile manipulators: Traditional approaches and multi-agent fuzzy-based approaches. In: International Conference on Intelligent Robotics and Applications, pp. 679–692. Springer

  • Hentout A, Maoudj A, Guir D, Saighi S, Harkat MA, Hammouche MZ, Bakdi A (2019) Collision-free path planning for indoor mobile robots based on rapidly-exploring random trees and piecewise cubic hermite interpolating polynomial. International Journal of Imaging and Robotics 19(03)

  • Hentout A, Bouzouia B, Toumi R, Toukal Z (2009) Agent-based coordinated control of mobile manipulators. In: The International Conference on Systems and Processing Information (ICSIP’09)

  • Hentout A, Bouzouia B, Toukal Z, Toumi R (2009) Multi-agent remote control of the robuter/ulm mobile manipulator robot. In: 2009 IEEE International Conference on Mechatronics, pp. 1–6. IEEE

  • Hentout A, Mustapha A, Maoudj A, Akli I (2018) Key challenges and open issues of industrial collaborative robotics. In: 27th International Conference on Robot and Human Interactive Communication (IEEE RO-MAN 2018), Workshop on Human-Robot Interaction: From Service to Industry (HRI-SI2018). IEEE

  • Hentout A, Lehtihet H, Chettibi T, Bouzouia B (2010) Roadmap-based collision-free trajectory planning for manipulator robots. Journal of Modelling & Simulation of Systems 1(1)

  • Hsu P, Mauser J, Sastry S (1989) Dynamic control of redundant manipulators. J Robot Syst 6(2):133–148

    Article  Google Scholar 

  • Hsu D, Kavraki LE, Latombe J-C, Motwani R, Sorkin S (1998) On finding narrow passages with probabilistic roadmap planners. In: Robotics: The Algorithmic Perspective: 1998 Workshop on the Algorithmic Foundations of Robotics, pp. 141–154

  • Hu Y, Yang SX (2004) A knowledge based genetic algorithm for path planning of a mobile robot. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5, pp. 4350–4355. IEEE

  • Huang S-J, Yang D-N (1997) Fuzzy logic controller for a SCARA robot with synchronous network. Int J Comput Appl Technol 10(1–2):15–26

    Google Scholar 

  • Huang H-C, Chen C-P, Wang P-R (2012) Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators. In: The International Conference on Systems, Man, and Cybernetics (SMC), pp. 3105–3110. IEEE

  • Hui D, Fuchun S, Zengqi S (2002) Observer-based adaptive controller design of flexible manipulators using time-delay neuro-fuzzy networks. Journal of Intelligent & Robotic Systems 34(4):453–466

    Article  MATH  Google Scholar 

  • Ikeda K, Tanaka H, Zhang T-x, Minami M, Mae Y (2006) On-line optimization of avoidance ability for redundant manipulator. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 592–597. IEEE

  • Infantino I, Chella A, Dindo H, Macaluso I (2005) A cognitive architecture for robotic hand posture learning. IEEE Trans Syst Man Cybernetics Part C 35(1):42–52

  • Islam MN (2008) Implementation of a new backtrack free path planning algorithm for manipulators. PhD thesis, Program of System Design Engineering Graduate School of Engineering, Graduate School of Engineering, University of Fukui, Japan

  • Jain R, Sivakumaran N, Radhakrishnan TK (2011) Design of self tuning fuzzy controllers for nonlinear systems. Expert Syst Appl 38(4):4466–4476

    Article  Google Scholar 

  • Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. IEEE Trans Autom Control 42(10):1482–1484

    Article  Google Scholar 

  • Jassadapakorn C, Chongstitvatana P (2002) Reactive planning with evolutionary computation. In: National Computer Science and Engineering Conference, Pattaya, Thailand, pp. 357–361

  • Jiao J, Cao Z, Zhao P, Liu X, Tan M (2013) Bezier curve based path planning for a mobile manipulator in unknown environments. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 1864–1868. IEEE

  • Jin L, Li S, Yu J, He J (2018) Robot manipulator control using neural networks: a survey. Neurocomputing 285:23–34

    Article  Google Scholar 

  • Jing X, Guangxin W, Chongyang L, Hong L (2016) Real-time collision detection for manipulators based on fuzzy synthetic evaluation. In: 2016 IEEE International Conference on Mechatronics and Automation, pp. 777–782. IEEE

  • John-Otumu AM, Ogba GU, Nwokonkwo OC (2020) A survey on artificial intelligence based techniques for diagnosis of hepatitis variants. Journal of Advances in Science and Engineering 3(1):43–56

    Article  Google Scholar 

  • Kala R, Shukla A, Tiwari R (2010) Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning. Artif Intell Rev 33(4):307–327

    Article  Google Scholar 

  • Kalita B, Narayan J, Dwivedy SK (2020) Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review. International Journal of Social Robotics, 1–19

  • Kamali K, Bonev IA, Desrosiers C (2020) Real-time motion planning for robotic teleoperation using dynamic-goal deep reinforcement learning. In: 2020 17th Conference on Computer and Robot Vision (CRV), pp. 182–189. IEEE

  • Kambhampati S, Davis L (1986) Multiresolution path planning for mobile robots. IEEE Journal on Robotics and Automation 2(3):135–145

    Article  Google Scholar 

  • Kar I, Premkumar P, Behera L (2008) Visual motor control of a 6-DOF robot manipulator using a fuzzy learning paradigm. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1166–1173. IEEE

  • Katic D, Vukobratovic M (2013) Intelligent Control of Robotic Systems, vol 25. Springer, Dordrecht

    MATH  Google Scholar 

  • Katic D, Vukobratovic M (2003) Intelligent control of robotic systems. In: Tzafestas SG (ed) International Series on Microprocessor-based and Intelligent Systems Engineering. Springer, Dordrecht, pp 21–161

    Google Scholar 

  • Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

    Article  Google Scholar 

  • Kavraki L, Latombe J-C (1994) Randomized preprocessing of configuration for fast path planning. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 2138–2145. IEEE

  • Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of International Conference on Neural Networks (ICNN’95), vol. 4, pp. 1942–1948. IEEE

  • Kermiche S, Larbi SM, Abbassi HA (2007) Fuzzy logic control of robot manipulator in the presence of fixed obstacle. Int Arab J Inf Technol 4(2):26–32

    Google Scholar 

  • Khalil W, Gallot G, Boyer F (2007) Dynamic modeling and simulation of a 3-d serial eel-like robot. IEEE Trans Syst Man Cybern Part C 37(6):1259–1268

  • Khatib O (1983) Dynamic control of manipulator in operational space. In: Proceedings of The 6th IFToMM World Congress on Theory of Machines and Mechanisms, pp. 1128–1131

  • Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp. 396–404. Springer, New York

  • Khoiy KA, Davatgarzadeh F, Taheri M (2013) A review on fuzzy-logic method to control robotic manipulator systems. Univ J Comput Anal 1(2013):40–47

    Google Scholar 

  • Khosla P, Volpe R (1988) Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings of The 1988 IEEE International Conference on Robotics and Automation, pp. 1778–1784. IEEE

  • Khoukhi A, Baron L, Balazinski M, Demirli K (2008) A hierarchical neuro-fuzzy system to near optimal-time trajectory planning of redundant manipulators. Eng Appl Artif Intell 21(7):974–984

    Article  MATH  Google Scholar 

  • Khoukhi A, Baron L, Balazinski M (2007) Multi-objective trajectory planning for redundant manipulators. In: The 5th International Conference on Industrial Automation, pp. 11–13

  • Khurpade JB, Dhami SS, Banwait SS (2011) A review of fuzzy logic based control of robotic manipulators. In: ASME International Mechanical Engineering Congress and Exposition, vol. 54938, pp. 241–257

  • Kiang CT, Spowage A, Yoong CK (2015) Review of control and sensor system of flexible manipulator. Journal of Intelligent & Robotic Systems 77(1):187–213

    Article  Google Scholar 

  • Kim J-O, Khosla P (1992) Real-time obstacle avoidance using harmonic potential functions. IEEE Transaction on Robotics and Automation 8:338–349

    Article  Google Scholar 

  • Kim J, Kim S-R, Kim S-J, Kim D-H (2010) A practical approach for minimum-time trajectory planning for industrial robots. Industrial Robot: An International Journal 37(1):51–61

    Article  Google Scholar 

  • Kim SH, Nam E, Ha TI, Hwang S-H, Lee JH, Park S-H, Min B-K (2019) Robotic machining: A review of recent progress. Int J Precis Eng Manuf 20(9):1629–1642

    Article  Google Scholar 

  • Kim YH, Lewis FL (2000) Optimal design of CMAC neural-network controller for robot manipulators. IEEE Trans Syst Man Cybern Part C 30(1):22–31

  • Kim S-W, Lee J-J (1993) Resolved motion rate control of redundant robots using fuzzy logic. In: Proceedings of The 2nd IEEE International Conference on Fuzzy Systems, pp. 333–338. IEEE

  • Knispel L, Matousek R (2013) A performance comparison of rapidly-exploring random tree and dijkstra’s algorithm for holonomic robot path planning. Institute of Automation and Computer Science, Faculty of Mechanical Engineerig, Brno University of Technology, 154–162

  • Koren Y, Borenstein J (1991) Potential field methods and their inherent limitations for mobile robot navigation. In: IEEE International Conference on Robotics and Automation, 1991. Proceedings. ICRA’91, vol. 2, pp. 1398–1404

  • Koubaa A, Bennaceur H, Chaari I, Trigui S, Ammar A, Sriti M-F, Alajlan M, Cheikhrouhou O, Javed Y (2018) Background on artificial intelligence algorithms for global path planning. In: Robot Path Planning and Cooperation. Studies in Computational Intelligence, vol. 772, pp. 13–51. Springer, Switzerland. Chap. 2

  • Koyuncu B, Güzel M (2007) Software development for the kinematic analysis of a lynx 6 robot arm. World Academy of Science, Engineering and Technology 30:2007

    Google Scholar 

  • Koza JR, Poli R (2005) Genetic programming. In: Burke EK, Kendall G (eds) Search Methodologies. Springer, Boston, MA, pp 127–164

    Chapter  Google Scholar 

  • Kramer J, Kandel A (2010) Robust small robot localization from highly uncertain sensors. IEEE Trans Syst Man Cybern Part C 41(4):509–519

  • Kubota N, Arakawa T, Fukuda T (1998) Motion learning for redundant manipulator with structured intelligence. In: IECON’98. Proceedings of The 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 98CH36200), vol. 1, pp. 104–109. IEEE

  • Kuffner JJ, LaValle SM (2000) RRT-connect: An efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2, pp. 995–1001. IEEE

  • Kumar N, Borm J-H, Panwar V, Chai J (2012) Tracking control of redundant robot manipulators using rbf neural network and an adaptive bound on disturbances. Int J Precis Eng Manuf 13(8):1377–1386

    Article  Google Scholar 

  • Kumar S, Rani K, Banga V (2017) Robotic arm movement optimization using soft computing. IAES International Journal of Robotics and Automation (IJRA) 6(1):1–14

    Article  Google Scholar 

  • Kundu S, Dayal RP (2010) A fuzzy approach towards behavioral strategy for navigation of mobile agent. In: International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT2010), pp. 292–297. IEEE

  • Kunz T, Reiser U, Stilman M, Verl A (2010) Real-time path planning for a robot arm in changing environments. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5906–5911. IEEE

  • Köker R (2013) A neuro-simulated annealing approach to the inverse kinematics solution of redundant robotic manipulators. Engineering with Computers 29(4):507–515

    Article  Google Scholar 

  • LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • LaValle SM, Kuffner JJ Jr (2001) Randomized kinodynamic planning. The international journal of robotics research 20(5):378–400

    Article  Google Scholar 

  • Ladd A, Kavraki LE (2002) Generalizing the analysis of prm. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2, pp. 2120–2125. IEEE

  • Lagaza K, Pandey A (2018) A literature review on motion planning of hexapod machines using different soft computing methods. Global Journal of Engineering, Science and Social Science Studies 3(1):1–10

    Google Scholar 

  • Larsen L, Kim J, Kupke M (2014) Intelligent path panning towards collision-free cooperating industrial robots. In: Proceedings of The 12th ICINCO 2014 International Conference on Informatics in Control, Automation and Robotics, vol. 2

  • Latash ML (1993) Control of human movement. Human Kinetics

  • Latombe J-C (1999) Motion planning: A journey of robots, molecules, digital actors, and other artifacts. The International Journal of Robotics Research 18(11):1119–1128

    Article  Google Scholar 

  • Latombe J-C (2012) Robot motion planning, vol 124. Springer, New York

    Google Scholar 

  • Lazrak M (1996) Nouvelle approche de commande optimale en temps final libre et construction d’algorythmes de commande de systèmes articulés. PhD thesis, Poitiers

  • Le TD, Kang H-J (2014) An adaptive tracking controller for parallel robotic manipulators based on fully tuned radial basic function networks. Neurocomputing 137:12–23

    Article  Google Scholar 

  • Lee S, Adams TM, Ryoo B-y (1997) A fuzzy navigation system for mobile construction robots. Autom Constr 6(2):97–107

  • Li S, Chen S, Liu B, Li Y, Liang Y (2012) Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91:1–10

    Article  Google Scholar 

  • Li Z, Chen W, Luo J (2008) Adaptive compliant force-motion control of coordinated non-holonomic mobile manipulators interacting with unknown non-rigid environments. Neurocomputing 71(7–9):1330–1344

    Article  Google Scholar 

  • Li Y, Tong S, Li T (2013) Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal Real World Appl 14(1):483–494

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Zhao T, Chen F, Hu Y, Su C-Y, Fukuda T (2017) Reinforcement learning of manipulation and grasping using dynamical movement primitives for a humanoidlike mobile manipulator. IEEE/ASME Trans Mechatron 23(1):121–131

    Article  Google Scholar 

  • Li P, Du X (2004) A fuzzy logic learning control for vibration suppression of manipulator robot systems. In: 2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings., pp. 327–331. IEEE

  • Li J, Liu Y, Zang X (2018) Kinematics analysis for a heavy-load redundant manipulator arm based on gradient projection method. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 260–264. IEEE

  • Li D, Wang H, You B (2009) Path planning research and simulation of planar 3r redundant robot. In: 2009 4th IEEE Conference on Industrial Electronics and Applications, pp. 2855–2858. IEEE

  • Lian R-J (2012) Grey-prediction self-organizing fuzzy controller for robotic motion control. Inf Sci 202:73–89

    Article  Google Scholar 

  • Lian R-J (2013) Enhanced adaptive grey-prediction self-organizing fuzzy sliding-mode controller for robotic systems. Inf Sci 236:186–204

    Article  MathSciNet  MATH  Google Scholar 

  • Lian R-J (2013) Adaptive self-organizing fuzzy sliding-mode radial basis-function neural-network controller for robotic systems. IEEE Trans Industr Electron 61(3):1493–1503

    Article  Google Scholar 

  • Lian G, Sun Z, Il KK (2002) Smart collision free motion control for robot arms. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), vol. 4, pp. 2817–2821. IEEE

  • Likhachev M, Ferguson D (2009) Planning long dynamically feasible maneuvers for autonomous vehicles. The International Journal of Robotics Research 28(8):933–945

    Article  Google Scholar 

  • Lin H-T (2010) Fuzzy application in service quality analysis: An empirical study. Expert Syst Appl 37(1):517–526

    Article  Google Scholar 

  • Lin C-C, Chuang J-H (2010) A potential-based path planning algorithm for hyper-redundant manipulators. J Chin Inst Eng 33(3):415–427

    Article  Google Scholar 

  • Lin C-C, Chuang J-H, Hsieh C-T (2011) A path planning algorithm using generalized potential model for hyper-redundant robots with 2-DOF joints. Int J Adv Rob Syst 8(2):18

    Article  Google Scholar 

  • Lin J, Lewis F (2002) Fuzzy controller for flexible-link robot arm by reduced-order techniques. IEE Proceedings - Control Theory and Applications 149(3):177–187

    Article  Google Scholar 

  • Lin G, Zhu L, Li J, Zou X, Tang Y (2021) Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning. Comput Electron Agric 188:106350

    Article  Google Scholar 

  • Liu KF (2007) A high-level fuzzy petri nets model for integrating quantitative and qualitative decision-making. Internat J Uncertain Fuzziness Knowledge-Based Systems 15(03):253–284

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y-B, Dai Q (2015) Improvement of obstacle and singularity avoidance path planning algorithm for redundant manipulators. In: 2015 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015), pp. 959–969. Atlantis Press

  • Liu H, Huang Y, Shi W, Xu H (2008) Design of adaptive fuzzy controller for flexible link manipulator. In: The International Conference on Industrial Technology, pp. 1–4. IEEE

  • Loredo-Flores A, Gonzalez-Galvan EJ, Cervantes-SÁnchez JJ, Martinez-Soto A (2008) Optimization of industrial, vision-based, intuitively generated robot point-allocating tasks using genetic algorithms. IEEE Trans Syst Man Cybern Part C 38(4):600–608

  • Low ES, Ong P, Cheah KC (2019) Solving the optimal path planning of a mobile robot using improved q-learning. Robot Auton Syst 115:143–161

    Article  Google Scholar 

  • Lozano-Perez T (1981) Automatic planning of manipulator transfer movements. IEEE Trans Syst Man Cybern 11(10):681–698

    Article  Google Scholar 

  • Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22(10):560–570

    Article  Google Scholar 

  • Luo J, Zhang J, Xie Z, Zhang X, Xiao L, Su X (2017) Acceleration-level inverse-free g2 scheme for inverse kinematics path tracking of robot manipulators. In: The 36th Chinese Control Conference (CCC), pp. 6804–6809. IEEE

  • López-Ibánez M, Stützle T (2010) The impact of design choices of multi-objective ant colony optimization algorithms on performance: An experimental study on the bi-objective TSP. In: Proceedings of The 12th Annual Conference on Genetic and Evolutionary Computation, pp. 71–78

  • Mac TT, Copot C, Tran DT, De Keyser R (2016) Heuristic approaches in robot path planning: a survey. Robot Auton Syst 86:13–28

    Article  Google Scholar 

  • Maciejewski AA, Klein CA (1985) Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. The International Journal of Robotics Research 4(3):109–117

    Article  Google Scholar 

  • Maeda Y, Kikuchi H, Izawa H, Ogawa H, Sugi M, Arai T (2003) An easily reconfigurable robotic assembly system. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 2, pp 2586–2591. IEEE

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

    Article  MATH  Google Scholar 

  • Mamlook R, Ahamed TI, Maqbool SD, Al-Ammar EA, Malik N (2016) A fuzzy simulated annealing algorithm for minimizing consumer electricity bill under demand response. International Journal of Computer Science and Information Security 14(11):144

    Google Scholar 

  • Manjaree S, Nakra BC, Agarwal V (2015) Comparative analysis for kinematics of 5-DOF industrial robotic manipulator. Acta Mech Autom 9(4)

  • Mao X, Wen X, Song Y, Li W, Chen G (2017) Eliminating drift of the head gesture reference to enhance google glass-based control of an NAO humanoid robot. Int J Adv Rob Syst 14(2):1729881417692583

    Google Scholar 

  • Maoudj A, Hentout A (2020) Optimal path planning approach based on q-learning algorithm for mobile robots. Appl Soft Comput 97:106796

    Article  Google Scholar 

  • Maoudj A, Hentout A, Bouzouia B, Toumi R (2018) On-line fault-tolerant fuzzy-based path planning and obstacles avoidance approach for manipulator robots. Internat J Uncertain Fuzziness Knowledge-Based Systems 26(05):809–838

    Article  Google Scholar 

  • Martínez R, Castillo O, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf Sci 179(13):2158–2174

    Article  MATH  Google Scholar 

  • Mbede JB, Huang X, Wang M (2000) Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators. Robot Auton Syst 32(1):61–72

    Article  Google Scholar 

  • Mbede JB, Huang X, Wang M (2003) Robust neuro-fuzzy sensor-based motion control among dynamic obstacles for robot manipulators. IEEE Trans Fuzzy Syst 11(2):249–261

    Article  Google Scholar 

  • Mendes N, Neto P (2015) Indirect adaptive fuzzy control for industrial robots: a solution for contact applications. Expert Syst Appl 42(22):8929–8935

    Article  Google Scholar 

  • Mendes N, Neto P, Pires JN, Loureiro A (2013) An optimal fuzzy-pi force/motion controller to increase industrial robot autonomy. The International Journal of Advanced Manufacturing Technology 68(1–4):435–441

    Article  Google Scholar 

  • Merchán-Cruz EA, Morris AS (2006) Fuzzy-GA-based trajectory planner for robot manipulators sharing a common workspace. IEEE Trans Rob 22(4):613–624

    Article  Google Scholar 

  • Meza JL, Santibáñez V, Soto R, Llama MA (2011) Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans Industr Electron 59(6):2709–2717

    Article  Google Scholar 

  • Michels K, Klawonn F, Kruse R, Nürnberger A (2007) Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers, vol 200. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  • Mindstorms (2021) https://www.lego.com/en-gb/themes/mindstorms

  • Mineo C, Pierce SG, Nicholson PI, Cooper I (2016) Robotic path planning for non-destructive testing: A custom matlab toolbox approach. Robotics and Computer-Integrated Manufacturing 37:1–12

    Article  Google Scholar 

  • Miro JV, White AS (2002) Quasi-optimal trajectory planning and control of a CRS A251 industrial robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 216(4):343–356

    Google Scholar 

  • Mirza N (2020) Robotic path planning and fuzzy neural networks. International Arab Journal of Science and Technology 17(4A):615–620

    MathSciNet  Google Scholar 

  • Mobadersany P, Khanmohammadi S, Ghaemi S (2015) A fuzzy multi-stage path-planning method for a robot in a dynamic environment with unknown moving obstacles. Robotica 33(9):1869

    Article  Google Scholar 

  • Mohamed NA, Azar AT, Abbas NE, Ezzeldin MA, Ammar HH (2020) Experimental kinematic modeling of 6-DOF serial manipulator using hybrid deep learning. In: Hassanien AE, Azar A, Gaber T, Oliva D, Tolba F (eds) The International Conference on Artificial Intelligence and Computer Vision (AICV2020), vol 1153. Advances in Intelligent Systems and Computing. Springer, Switzerland, pp 283–295

  • Mohanan M, Salgoankar A (2018) A survey of robotic motion planning in dynamic environments. Robot Auton Syst 100:171–185

    Article  Google Scholar 

  • Monteiro D, Madrid M (1999) Planning of robot trajectories with genetic algorithms. In: Proceedings of The 1st Workshop on Robot Motion and Control. RoMoCo’99 (Cat. No. 99EX353), pp. 223–228. IEEE

  • Moulianitis VC, Katrantzis EF, Stravopodis NA, Aspragathos NA (2017) A comparative study of three manipulator performance measures. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 19–27. Springer

  • Mu Z, Zhang B, Xu W, Li B, Liang B (2016) Fault tolerance kinematics and trajectory planning of a 6-DOF space manipulator under a single joint failure. In: The IEEE International Conference on Real-time Computing and Robotics (RCAR), pp 483–488. IEEE

  • Nagata C, Sakamoto E, Suzuki M, Aoyagi S (2010) Path generation and collision avoidance of robot manipulator for unknown moving obstacle using real-time rapidly-exploring random trees (RRT) method. In: Service Robotics and Mechatronics, pp. 335–340. Springer, London

  • Nakashima T, Yokota Y, Shoji Y, Ishibuchi H (2007) A genetic approach to the design of autonomous agents for futures trading. Artificial Life and Robotics 11(2):145–148

    Article  Google Scholar 

  • Nakhaeinia D, Payeur P, Laganiere R (2018) A mode-switching motion control system for reactive interaction and surface following using industrial robots. IEEE/CAA Journal of Automatica Sinica 5(3):670–682

    Article  MathSciNet  Google Scholar 

  • Narayan J, Mishra S, Jaiswal G, Dwivedy SK (2020) Novel design and kinematic analysis of a 5-DOFs robotic arm with three-fingered gripper for physical therapy. Materials Today: Proceedings 28:2121–2132

    Google Scholar 

  • Narayan J, Singla E, Soni S, Singla A (2018) Adaptive neuro-fuzzy inference system-based path planning of 5-degrees-of-freedom spatial manipulator for medical applications. The Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 232(7):726–732

    Article  Google Scholar 

  • Narayan J, Singla A (2017) ANFIS-based kinematic analysis of a 4-DOFs SCARA robot. In: The 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 205–211. IEEE

  • Narukawa K, Yoshiike T, Tanaka K, Kuroda M (2017) Real-time collision detection based on one class svm for safe movement of humanoid robot. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 791–796. IEEE

  • Nazemizadeh M, Taheri M, Nazeri S (2014) The application of fuzzy-logic method to control of robots: a review study. International Journal of Mechanical Engineering and Robotics Research 3(2):229

    Google Scholar 

  • Nearchou AC (1998) Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm. Mech Mach Theory 33(3):273–292

    Article  MathSciNet  MATH  Google Scholar 

  • Nedungadi A (1993) A fuzzy logic-based robot controller. Journal of Intelligent & Fuzzy Systems 1(3):243–251

    Article  Google Scholar 

  • Nenchev DN (1992) Restricted jacobian matrices of redundant manipulators in constrained motion tasks. The International Journal of Robotics Research 11(6):584–597

    Article  Google Scholar 

  • Ngo XK, Ngo MD (2020) A review of artificial intelligence algorithms used for robotic manipulator. Int J Res Appl Sci Eng Technol 8(IX):410–416

  • Nicosia S, Tomei P, Tornambe A (1986) Discrete dynamics of robot arms. IFAC Proceedings Volumes 19(14):89–94

    Article  Google Scholar 

  • Nielsen CL, Kavraki LE (2000) A two level fuzzy prm for manipulation planning. In: Proceedings of The 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2000) (Cat. No. 00CH37113), vol. 3, pp. 1716–1721. IEEE

  • Nuredini R, Fetaji B, Chorbev I (2018) Bio-inspired obstacle avoidance: From animals to intelligent agents. J Comput 13(2):146–153

    Article  Google Scholar 

  • Oktarina Y, Septiarini F, Dewi T, Risma P, Nawawi M (2019) Fuzzy-PID controller design of 4-DOF industrial arm robot manipulator. Computer Engineering and Applications Journal 8(2):123–136

    Article  Google Scholar 

  • Olesiak K (2018) Analysis of the energy consumption by an industrial robot for the angular movement of individual axes. Przeglad Elektrotechniczny 94:218–221

    Google Scholar 

  • Olesiak K (2019) A fuzzy decision model in designing an industrial robot’s trajectory. Przeglad Elektrotechniczny 95

  • Overmars MH, Svestka P (1994) A Probablisitic Learning Approach to Motion Planning vol. 1994. K. Goldberg et al. (Eds.), AK Peters, The Netherlands

  • Ó’Dúnlaing C, Yap CK (1985) A “retraction” method for planning the motion of a disc. Journal of Algorithms 6(1):104–111

  • ó’Dúnlaing C, Sharir M, Yap CK (1983) Retraction: A new approach to motion-planning. In: Proceedings of The 15th Annual ACM Symposium on Theory of Computing, pp. 207–220

  • Padula F, Perdereau V (2011) A new pseudoinverse for manipulator collision avoidance. IFAC Proc Vol 44(1):14687–14692

    Article  Google Scholar 

  • Pan W, Lyu M, Hwang K-S, Ju M-Y, Shi H (2018) A neuro-fuzzy visual servoing controller for an articulated manipulator. IEEE Access 6:3346–3357

    Article  Google Scholar 

  • Pandey A, Parhi DR (2016) Autonomous mobile robot navigation in cluttered environment using hybrid takagi-sugeno fuzzy model and simulated annealing algorithm controller. World Journal of Engineering 13(05):431–440

    Article  Google Scholar 

  • Parisi DR, Gilman M, Moldovan H (2009) A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Phys A 388(17):3600–3608

    Article  Google Scholar 

  • Parker JK, Khoogar AR, Goldberg DE (1989) Inverse kinematics of redundant robots using genetic algorithms. In: 1989 IEEE International Conference on Robotics and Automation, pp. 271–276. IEEE Computer Society

  • Pashkevich A, Kazheunikau M (2005) Neural network approach to trajectory synthesis for robotic manipulators. J Intell Manuf 16(2):173–187

    Article  Google Scholar 

  • Passino KM, Yurkovich S, Reinfrank M (1998) Fuzzy Control vol. 42, pp. 15–21. Addison-wesley, Menlo Park, CA

  • Payeur P, Le-Huy H, Gosselin C (1994) Robot path planning using neural networks and fuzzy logic. In: Proceedings of The 20th Annual Conference of IEEE Industrial Electronics (IECON’94), vol. 2, pp. 800–805. IEEE

  • Pham DT, Haj Darwish A, Eldukhri EE (2009) Optimisation of a fuzzy logic controller using the bees algorithm. International Journal of Computer Aided Engineering and Technology 1(2):250–264

    Article  Google Scholar 

  • Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm - A novel tool for complex optimisation problems. In: Intelligent Production Machines and Systems, pp. 454–459. Elsevier, UK

  • Ponce R, Merchán EA, Héctor L (2013) Path planning for robotic manipulators using a new hybrid neuro-fuzzy technique. In: The 2013 World Congress on Advances in Nano, Biomechanics, Robotics, and Energy Research (ANBRE13), pp. 203–215

  • Poole HH (1989) Types of robots. In: Fundamentals of Robotics Engineering, pp 27–51. Van Nostrand Reinhold, Springer, New York

  • Pott A, Bruckmann T (2013) Cable-driven parallel robots: theory and application. Springer, Switzerland, p 465

    Google Scholar 

  • Pratihar DK, Hui NB (2007) Evolution of fuzzy controllers and applications. In: Jain LC, Palade V, Srinivasan D (eds) Advances in Evolutionary Computing for System Design, vol 66. Studies in Computational Intelligence. Springer, Berlin, Heidelberg, pp 47–69

  • Precup R-E, David R-C, Petriu EM, Preitl S, Radac M-B (2011) Fuzzy control systems with reduced parametric sensitivity based on simulated annealing. IEEE Trans Ind Electron 59(8):3049–3061

    Article  Google Scholar 

  • Precup R-E, Hellendoorn H (2011) A survey on industrial applications of fuzzy control. Comput Ind 62(3):213–226

    Article  Google Scholar 

  • Puls S, Betz P, Wyden M, Wörn H (2012) Path planning for industrial robots in human-robot interaction. In: IEEE/RSJ IROS Workshop on Robot Motion Planning: Online, Reactive, and in Real-Time. IEEE

  • Qixin C, Yanwen H, Jingliang Z (2006) An evolutionary artificial potential field algorithm for dynamic path planning of mobile robot. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3331–3336. IEEE

  • Qizhi Z, Yali Z, Xinsheng G (2010) A PSO algorithm for biped gait planning using spline approximation. In: The IEEE Conference on Robotics, Automation and Mechatronics, pp 563–568. IEEE

  • Raafat S, Raheem F (2017) Intelligent and robust path planning and control of robotic systems. In: Mathematical Advances Towards Sustainable Environmental Systems, pp. 291–317. Springer, Switzerland

  • Raheem FA, Gorial II (2013) Comparative study between joint space and cartesian space path planning for two-link robot manipulator using fuzzy logic. Iraqi J Comput Commun Control Syst Eng 13(2):1–10

    Google Scholar 

  • Raheem FA, Ridha MMN, Gorial MII (2014) Two-link robot manipulator obstacle avoidance using fuzzy logic: Simulation and experimental work. In: The Second Engineering Conference of Control, Computers and Mechatronics Engineering (ECCCM2), pp 203–207

  • Rahimi H, Nazemizadeh M (2014) Dynamic analysis and intelligent control techniques for flexible manipulators: a review. Adv Robot 28(2):63–76

    Article  Google Scholar 

  • Rantanen MT, Juhola M (2014) Using probabilistic roadmaps in changing environments. Comput Anim Virtual Worlds 25(1):17–31

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Reif JH (1979) Complexity of the mover’s problem and generalizations. In: 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pp. 421–427. IEEE Computer Society

  • Reinoso O, Paya L (2020) Special issue on mobile robots navigation. Appl Sci 10(4):1–5

    Article  Google Scholar 

  • Rekha HS, Nayak J, Naik B, Pelusi D (2019) Soft computing in robotics: A decade perspective. In: International Conference on Application of Robotics in Industry Using Advanced Mechanisms, pp 59–78. Springer

  • Ren T, Dong Y, Wu D, Chen K (2018) Collision detection and identification for robot manipulators based on extended state observer. Control Eng Pract 79:144–153

    Article  Google Scholar 

  • Reynolds CW (1994) Evolution of obstacle avoidance behavior: Using noise to promote robust solutions. Adv Genet Program 1:221–241

    Google Scholar 

  • Rezk NM, Alkabani Y, Bedor H, Hammad S (2014) A distributed genetic algorithm for swarm robots obstacle avoidance. In: 2014 9th International Conference on Computer Engineering & Systems (ICCES), pp 170–174. IEEE

  • Rivero D, Dorado J, Rabuñal J, Pazos A (2010) Generation and simplification of artificial neural networks by means of genetic programming. Neurocomputing 73(16–18):3200–3223

    Article  Google Scholar 

  • Ro PI, Lee BR (1995) Neural-fuzzy hybrid system for mobile robot path-planning in a partially known environment. In: Proceedings of 1995 American Control Conference-ACC’95, vol 1, pp 673–677. IEEE

  • Robla S, Llata JR, Torre-Ferrero C, Sarabia EG, Becerra V, Perez-Oria J (2014) Visual sensor fusion for active security in robotic industrial environments. EURASIP J Adv Signal Process 2014(1):1–20

    Article  Google Scholar 

  • Roy S, Pratihar D (2003) A genetic-fuzzy approach for optimal path-planning of a robotic manipulator among static obstacles. J Inst Eng 84:15–22

  • Sahu PK, Balamurali G, Mahanta GB, Biswal BB (2019) A heuristic comparison of optimization algorithms for the trajectory planning of a 4-axis SCARA robot manipulator. Computational Intelligence in Data Mining, vol 711. Advances in Intelligent Systems and Computing. Springer, Singapore, pp 569–582

  • Sakellariou J, Fassois S (2008) Vibration based fault detection and identification in an aircraft skeleton structure via a stochastic functional model based method. Mech Syst Signal Process 22(3):557–573

    Article  Google Scholar 

  • Schwartz JT, Sharir M, Hopcroft JE (1987) Planning, geometry, and complexity of robot motion, vol 4. Ablex Publishing Corporation, New Jersey

    Google Scholar 

  • Seidi M, Markazi AHD (2008) Model-based fuzzy control of flexible joint manipulator: a LMI approach. In: 2008 5th International Symposium on Mechatronics and Its Applications, pp. 1–5. IEEE

  • Selekwa MF, Dunlap DD, Shi D, Collins EG Jr (2008) Robot navigation in very cluttered environments by preference-based fuzzy behaviors. Robot Auton Syst 56(3):231–246

    Article  Google Scholar 

  • Seraji H, Steele R, Iviev R (1996) Sensor-based collision avoidance: theory and experiments. J Robot Syst 13(9):571–586

    Article  Google Scholar 

  • Sezgin U, Seneviratne L, Earles S (1997) Redundancy utilization for obstacle avoidance of planar robot manipulators. Proc Inst Mech Eng C 211(6):463–475

    Article  Google Scholar 

  • Shabeeb AH (2013) Path planning of robot manipulator using bezier technique. PhD thesis, M.Sc. thesis, Department of Production Engineering and Metallurgy, University of Technology, Iraq

  • Shakiba R, Najafipour M, Salehi ME (2013) An improved PSO-based path planning algorithm for humanoid soccer playing robots. In: 2013 3rd Joint Conference of AI & Robotics and 5th RoboCup Iran Open International Symposium, pp. 1–6. IEEE

  • Shaogang Z, Ming L (2010) Path planning of inspection robot based on ant colony optimization algorithm. In: 2010 International Conference on Electrical and Control Engineering, pp. 1474–1477. IEEE

  • Sharkawy A-N, Koustoumpardis PN, Aspragathos NA (2018) Manipulator collision detection and collided link identification based on neural networks. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 3–12. Springer

  • Sheikhlar A, Fakharian A, Beik-Mohammadi H, Adhami-Mirhosseini A (2016) Design and implementation of self-adaptive pd controller based on fuzzy logic algorithm for omni-directional fast robots in presence of model uncertainties. Int J Uncertain Fuzziness Knowledge-Based Syst 24(05):761–780

    Article  MathSciNet  Google Scholar 

  • Shen L, Wen Y (2020) Investigation on the discretization of a repetitive path planning scheme for redundant robot manipulators. IEEE Access 8:23895–23903

    Article  Google Scholar 

  • Shi P, Cui Y (2010) Dynamic path planning for mobile robot based on genetic algorithm in unknown environment. In: 2010 Chinese Control and Decision Conference, pp. 4325–4329. IEEE

  • Shill PC, Pal KK, Amin MF, Murase K (2011) Genetic algorithm based fully automated and adaptive fuzzy logic controller. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 1572–1579. IEEE

  • Shill PC, Amin MF, Akhand M, Murase K (2012) Optimization of interval type-2 fuzzy logic controller using quantum genetic algorithms. In: 2012 IEEE International Conference on Fuzzy Systems, pp. 1–8. IEEE

  • Shiller Z, Dubowsky S (1991) On computing the global time-optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797

    Article  Google Scholar 

  • Shin H, Chae J (2020) A performance review of collision-free path planning algorithms. Electronics 9(2):316

    Article  Google Scholar 

  • Shin K, McKay N (1986) Selection of near-minimum time geometric paths for robotic manipulators. IEEE Trans Autom Control 31(6):501–511

    Article  MATH  Google Scholar 

  • Siciliano B, Khatib O (2016) Springer handbook of robotics. Springer, Berlin, p 2227

    Book  MATH  Google Scholar 

  • Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics: modelling, planning and control. Springer, Berlin

    Google Scholar 

  • Siddique N, Adeli H (2015) Nature inspired computing: an overview and some future directions. Cogn Comput 7(6):706–714

    Article  Google Scholar 

  • Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots. MIT Press, Cambridge, England

    Google Scholar 

  • Silva JF, Pinto SF (2018) Linear and nonlinear control of switching power converters. In: Power Electronics Handbook (Fourth Edition), pp. 1141–1220. Elsevier, New York. Chap. 35

  • Silva AC, Silva J, dos Santos CP (2014) A modified LGMD-based neural network for automatic collision detection. In: Ferrier JL, Bernard A, Gusikhin O, Madani K (eds) Informatics in Control, Automation and Robotics, vol 283. Lecture Notes in Electrical Engineering. Springer, Switzerland, pp 217–233

  • Singh NH, Thongam K (2019) Mobile robot navigation using fuzzy-GA approaches along with three path concept. Iran J Sci Technol Trans Electr Eng 43(2):277–294

    Article  Google Scholar 

  • Singh M, Shukla M (2020) Intelligent and hybrid control techniques for robotic manipulator. In: International Conference on Intelligent Computing and Smart Communication 2019, pp. 1535–1545. Springer

  • Six D, Briot S, Chriette A, Martinet P (2017) The kinematics, dynamics and control of a flying parallel robot with three quadrotors. IEEE Robot Autom Lett 3(1):559–566

    Article  Google Scholar 

  • Son C (2002) Optimal control planning strategies with fuzzy entropy and sensor fusion for robotic part assembly tasks. Int J Mach Tools Manuf 42(12):1335–1344

    Article  Google Scholar 

  • Son C (2010) Comparison of optimal path planning algorithms for intelligent control of robotic part assembly task. Int J Uncertain Fuzziness Knowl-Based Syst 18(05):621–644

    Article  Google Scholar 

  • Son C (2013) Similarity measuring strategy of image patterns based on fuzzy entropy and energy variations in intelligent robot’s manipulative task. Appl Intell 38(2):131–145

    Article  Google Scholar 

  • Son C (2016) Intelligent rule-based sequence planning algorithm with fuzzy optimization for robot manipulation tasks in partially dynamic environments. Inf Sci 342:209–221

    Article  Google Scholar 

  • Son C (2019) Comparison of assembly-jam learning algorithms with fuzzy entropy measure for intelligent robot’s part micro-assembly. Int J Adv Manuf Technol 104(9):3473–3488

    Article  Google Scholar 

  • Son C (2011) Intelligent robotic path finding methodologies with fuzzy/crisp entropies and learning. Int J Robot Autom 26(3)

  • Song Z, Chen W, Zhao W, Wang W (2018) Fuzzy self-adjusting PID control strategy for 3-RRR parallel robots considering joint clearance. In: 2018 IEEE International Conference on Information and Automation (ICIA), pp. 470–474. IEEE

  • Sood M, Panchal VK (2020) Meta-heuristic techniques for path planning: recent trends and advancements. Int J Intell Syst Technol Appl 19(1):36–77

    Google Scholar 

  • Spong MW (1995) The swing up control problem for the acrobot. IEEE Control Syst Mag 15(1):49–55

    Article  Google Scholar 

  • Stentz A (1995) The focussed d* algorithm for real-time replanning. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), vol. 2, pp. 1652–1659

  • Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng 180(1):371–386

    Article  Google Scholar 

  • Su L, Tan M (2005) A virtual centrifugal force based navigation algorithm for explorative robotic tasks in unknown environments. Robot Auton Syst 51(4):261–274

    Article  Google Scholar 

  • Su K-H, Lian F-L, Yang C-Y (2012) Navigation design with SVM path planning and fuzzy-based path tracking for wheeled agent. In: 2012 International Conference on Fuzzy Theory and Its Applications (iFUZZY2012), pp. 273–278. IEEE

  • Sugeno M (1985) An introductory survey of fuzzy control. Inf Sci 36(1–2):59–83

    Article  MathSciNet  MATH  Google Scholar 

  • Sugeno M, Murakami K (1984) Fuzzy parking control of model car. In: The 23rd IEEE Conference on Decision and Control, pp. 902–903. IEEE

  • Sun YL, Er MJ (2004) Hybrid fuzzy control of robotics systems. IEEE Trans Fuzzy Syst 12(6):755–765

    Article  Google Scholar 

  • Sureshkumar W, Mahalingam K, Rama R (2017) Robot motion planning inside a grid using membrane computing. Int J Imaging Robot 17(1):14–26

    Google Scholar 

  • Svestka P (1997) Robot motion planning using probabilistic roadmaps. PhD Thesis, Universiteit Utrecht

  • Swarup A, Gopal M (1989) Control strategies for robot manipulators: a review. IETE J Res 35(4):198–207

    Article  Google Scholar 

  • Syed UA, Kunwar F, Iqbal M (2014) Guided autowave pulse coupled neural network (gapcnn) based real time path planning and an obstacle avoidance scheme for mobile robots. Robot Auton Syst 62(4):474–486

    Article  Google Scholar 

  • Szabó D, Szádeczky-Kardoss EG (2019) Robotic manipulator path-planning: Cost-function approximation with fuzzy inference system. In: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 259–264. IEEE

  • Taherifar A, Alasty A, Salarieh H, Boroushaki M (2013) Path planning for a hyper-redundant manipulator with lockable joints using PSO. In: 2013 The 1st RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 224–229. IEEE

  • Tanaka K, Wang HO (2004) Fuzzy control systems design and analysis: a linear matrix inequality approach. John Wiley & Sons, New York

    Google Scholar 

  • Tang SH, Khaksar W, Ismail N, Ariffin M (2012) A review on robot motion planning approaches. Pertanika J Sci Technol 20(1):15–29

    Google Scholar 

  • Tavares P, Lima J, Costa P, Moreira AP (2016) Multiple manipulators path planning using double A*. Industrial Robot: An International Journal 43(6):657–664

    Article  Google Scholar 

  • Tavares P, Lima J, Costa P (2016) Double A* path planning for industrial manipulators. In: Robot 2015: The 2nd Iberian Robotics Conference, pp 119–130. Springer

  • Tian L, Collins C (2005) Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics 15(10):1305–1320

    Article  Google Scholar 

  • Timmis J, Andrews P, Owens N, Clark E (2008) An interdisciplinary perspective on artificial immune systems. Evol Intel 1(1):5–26

    Article  MATH  Google Scholar 

  • Tomizuka M, Horowitz R, Anwar G, Jia Y (1988) Implementation of adaptive techniques for motion control of robotic manipulators. J Dyn Syst Meas Contr 110(1):62–69

    Article  MATH  Google Scholar 

  • Trinh C, Zlatanov D, Zoppi M, Molfino R (2015) A geometrical approach to the inverse kinematics of 6r serial robots with offset wrists. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 57144, pp. 05–08016. American Society of Mechanical Engineers

  • Tsai C-H, Lee J-S, Chuang J-H (2001) Path planning of 3-d objects using a new workspace model. IEEE Trans Syst Man Cybern Part C31(3):405–410

  • Tzafestas SG (2013) Introduction to mobile robot control. Elsevier, Amsterdam

    Google Scholar 

  • Van Pham H, Moore P (2018) Robot coverage path planning under uncertainty using knowledge inference and hedge algebras. Machines 6(4):46–65

    Article  Google Scholar 

  • Vadakkepat P, Tan KC, Ming-Liang W (2000) Evolutionary artificial potential fields and their application in real time robot path planning. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 1, pp. 256–263. IEEE

  • Valavanis KP, Hebert T, Kolluru R, Tsourveloudis N (2000) Mobile robot navigation in 2D dynamic environments using an electrostatic potential field. IEEE Trans Syst Man Cybern A 30(2):187–196

    Article  Google Scholar 

  • Volpe R, Khosla P (1990) Manipulator control with superquadric artificial potential functions: theory and experiments. IEEE Trans Syst Man Cybern 20(6):1423–1436

    Article  Google Scholar 

  • Vu NT-T, Tran NP (2020) Path planning for excavator arm: Fuzzy logic control approach. J Robot

  • Wagner C, Hagras H (2007) Evolving type-2 fuzzy logic controllers for autonomous mobile robots. In: Analysis and Design of Intelligent Systems Using Soft Computing Techniques, pp. 16–25. Springer, Berlin

  • Wang X, Gao X-Z, Ovaska SJ (2009) Fusion of clonal selection algorithm and harmony search method in optimisation of fuzzy classification systems. International J Bio-Inspired Comput 1(1–2):80–88

    Article  Google Scholar 

  • Wang F, Liu Z, Zhang Y, Chen CP (2017) Adaptive fuzzy visual tracking control for manipulator with quantized saturation input. Nonlinear Dyn 89(2):1241–1258

    Article  MATH  Google Scholar 

  • Wang M, Su Z, Tu D, Lu X (2013) A hybrid algorithm based on artificial potential field and bug for path planning of mobile robot. In: Proceedings of 2013 2nd International Conference on Measurement, Information and Control, vol. 2, pp. 1393–1398. IEEE

  • Wang Z, Cai M-z, Wang T, Zhang B (2017) Research on de-icing robot and its motion characteristics overhead transmission line. In: MATEC Web of Conferences, vol. 100, p. 03015. EDP Sciences

  • Wei Y, Jian S, He S, Wang Z (2014) General approach for inverse kinematics of nr robots. Mech Mach Theory 75:97–106

    Article  Google Scholar 

  • Wei WCS (2011) Line-grasping control for the deicing robot on high voltage transmission line. J Mech Eng 9

  • Wen S, Hu X, Lv X, Wang Z, Peng Y (2019) Q-learning trajectory planning based on takagi-sugeno fuzzy parallel distributed compensation structure of humanoid manipulator. Int J Adv Rob Syst 16(1):1729881419830204

    Google Scholar 

  • Wijayasekara D, Manic M (2014) Fuzzy logic based force-feedback for obstacle collision avoidance of robot manipulators. In: 2014 7th International Conference on Human System Interactions (HSI), pp. 76–81. IEEE

  • Wijayasekara D, Manic M (2014) Dynamic fuzzy force field based force-feedback for collision avoidance in robot manipulators. In: IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, pp. 3997–4003. IEEE

  • Wu X, Li Q, Heng K (2005) Development of a general manipulator path planner using fuzzy reasoning. Ind Robot 32(3):248–258

    Article  Google Scholar 

  • Xiao L, Zhang Y (2013) A new performance index for the repetitive motion of mobile manipulators. IEEE Trans Cybernetics 44(2):280–292

    Article  Google Scholar 

  • Xie L, Xue S, Zhang J, Zhang M, Tian W, Haugen S (2019) A path planning approach based on multi-direction A* algorithm for ships navigating within wind farm waters. Ocean Eng 184:311–322

    Article  Google Scholar 

  • Xin D, Hua-hua C, Wei-kang G (2005) Neural network and genetic algorithm based global path planning in a static environment. J Zhejiang Univ Sci A 6(6):549–554

    Article  Google Scholar 

  • Xu X, Hu Y, Zhai J, Li L, Guo P (2018) A novel non-collision trajectory planning algorithm based on velocity potential field for robotic manipulator. Int J Adv Rob Syst 15(4):1729881418787075

    Google Scholar 

  • Xu B, Pandian SR, Sakagami N, Petry F (2012) Neuro-fuzzy control of underwater vehicle-manipulator systems. J Franklin Inst 349(3):1125–1138

    Article  MathSciNet  MATH  Google Scholar 

  • Xu B, Stilwell DJ, Kurdila AJ (2010) A receding horizon controller for motion planning in the presence of moving obstacles. In: 2010 IEEE International Conference on Robotics and Automation, pp. 974–980. IEEE

  • Xu J, Hou Z, Liu Z, Qiao H (2019) Compare contact model-based control and contact model-free learning: A survey of robotic peg-in-hole assembly strategies. arXiv preprint arXiv:1904.05240

  • Xu W, Tso S, Lu Z (1998) A virtual target approach for resolving the limit cycle problem in navigation of a fuzzy behaviour-based mobile robot. In: Proceedings 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No. 98CH36190), vol. 1, pp. 44–49. IEEE

  • Yahya S, Moghavvemi M, Mohamed HA (2011) Redundant manipulators kinematics inversion. Sci Res Essays 6(26):5462–5470

    Google Scholar 

  • Yang X, Moallem M, Patel RV (2005) A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation. IEEE Trans Syst Man Cybern Part C 35(6):1214–1224

  • Yang M, Li C-z (2011) Path planing and tracking for multi-robot system based on improved PSO algorithm. In: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pp. 1667–1670. IEEE

  • Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: The World Congress on Nature & Biologically Inspired Computing (NaBIC), India, pp. 210–214. IEEE

  • Yang SX, Meng M (2001) Neural network approaches to dynamic collision-free trajectory generation. IEEE Trans Syst Man Cybern Part C 31(3):302–318

  • Yanik P, Ford G, McDaniel W (2010) An introduction and literature review of fuzzy logic applications for robot motion planning. In: Proceedings of American Society for Engineering Education Southeast Section Conference, pp. 1–10

  • Ye L, Duan J, Yang Z, Zou X, Chen M, Zhang S (2021) Collision-free motion planning for the litchi-picking robot. Comput Electron Agric 185:106151

    Article  Google Scholar 

  • Yeasmin S, Shill PC (2017) GA-based adaptive fuzzy logic controller for a robotic arm in the presence of moving obstacle. In: The 3rd International Conference on Electrical Information and Communication Technology (EICT), pp. 1–6. IEEE

  • Yen J, Langari R (1999) Fuzzy logic: intelligence, control, and information, vol 1. Prentice Hall, New Jersey

    Google Scholar 

  • Yoon HU, Lee D-W (2018) Subplanner algorithm to escape from local minima for artificial potential function based robotic path planning. Int J Fuzzy Logic Intell Syst 18(4):263–275

    Article  Google Scholar 

  • Yu J, Müller P (1996) An on-line cartesian space obstacle avoidance scheme for robot arms. Math Comput Simul 41(5–6):627–637

    Article  Google Scholar 

  • Yu G-R, Huang Y-J, Huang L-W (2010) Ts fuzzy control for magnetic levitation systems using quantum particle swarm optimization. In: Proceedings of SICE Annual Conference 2010, pp. 48–53. IEEE

  • Yuce B (2012) Novel computational technique for determining depth using the bees algorithm and blind image deconvolution. PhD thesis, Manufacturing Engineering Centre, School of Engineering, Cardiff University, United Kingdom

  • Yun SC, Ganapathy V, Chong LO (2010) Improved genetic algorithms based optimum path planning for mobile robot. In: 2010 11th International Conference on Control Automation Robotics & Vision, pp. 1565–1570. IEEE

  • Yüksel T, Sezgin A (2010) Two fault detection and isolation schemes for robot manipulators using soft computing techniques. Appl Soft Comput 10(1):125–134

    Article  Google Scholar 

  • Zadeh LA (1965) Information and control. Fuzzy sets 8(3):338–353

    Google Scholar 

  • Zadeh LA (1968) Fuzzy algorithms. Inf Control 1(12):94–102

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 1:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1984) Making computers think like people [fuzzy set theory]. IEEE Spectr 21(8):26–32

    Article  Google Scholar 

  • Zadeh LA, Klir GJ, Yuan B (1996) Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers, vol 6. World Scientific, Singapore

    Google Scholar 

  • Zavlangas PG, Tzafestas SG (2000) Industrial robot navigation and obstacle avoidance employing fuzzy logic. J Intell Robot Syst 27(1):85–97

    Article  MATH  Google Scholar 

  • Zerrouki N, Goléa N, Benoudjit N (2017) Particle swarm optimization of non uniform rational b-splines for robot manipulators path planning. Periodica Polytechnica Electrical Engineering and Computer Science 61(4):337–349

    Article  Google Scholar 

  • Zhang Y, Jin L (2017) Robot manipulator redundancy resolution. ASME Press and John Wiley & Sons, UK

    Book  Google Scholar 

  • Zhang Z, Yan Z (2019) An adaptive fuzzy recurrent neural network for solving the nonrepetitive motion problem of redundant robot manipulators. IEEE Trans Fuzzy Syst 28(4):684–691

    Article  Google Scholar 

  • Zhang X, Yu Q, Yu H (2018) Physics inspired methods for crowd video surveillance and analysis: a survey. IEEE Access 6:66816–66830

    Article  Google Scholar 

  • Zhang Y, Wang J (2004) Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Trans Syst Man Cybern Part C 34(1):752–759

  • Zhang Y-n (2003) Analysis and design of recurrent neural networks and their applications to control and robotic systems. PhD thesis, The Chinese University of Hong Kong

  • Zhang T, Liang X, Yu Y, Zhang B (2019) A method for obtaining optimal path in angle and avoiding collision for robotic belt grinding. Mathematical Problems in Engineering 2019

  • Zimmermann H-J (2011) Fuzzy Set Theory and Its Applications, 4th edn. Springer, New York

    Google Scholar 

  • Zoumponos G, Aspragathos N (2005) A fuzzy robot controller for the placement of fabrics on a work table. IFAC Proceedings Volumes 38(1):176–181

    Article  Google Scholar 

  • Zoumponos G, Aspragathos N (2008) Fuzzy logic path planning for the robotic placement of fabrics on a work table. Robotics and Computer-Integrated Manufacturing 24(2):174–186

    Article  Google Scholar 

  • Zoumponos GT, Aspragathos NA (2010) A fuzzy strategy for the robotic folding of fabrics with machine vision feedback. Industrial Robot: An International Journal 37(3):302–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelfetah Hentout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hentout, A., Maoudj, A. & Aouache, M. A review of the literature on fuzzy-logic approaches for collision-free path planning of manipulator robots. Artif Intell Rev 56, 3369–3444 (2023). https://doi.org/10.1007/s10462-022-10257-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10257-7

Keywords

Navigation