Skip to main content
Log in

Optimal control of a class of fractional heat diffusion systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a solution procedure for a class of optimal control problems involving distributed parameter systems described by a generalized, fractional-order heat equation is presented. The first step in the proposed procedure is to represent the original fractional distributed parameter model as an equivalent system of fractional-order ordinary differential equations. In the second step, the necessity for solving fractional Euler–Lagrange equations is avoided completely by suitable transformation of the obtained model to a classical, although infinite-dimensional, state-space form. It is shown, however, that relatively small number of state variables are sufficient for accurate computations. The main feature of the proposed approach is that results of the classical optimal control theory can be used directly. In particular, the well-known “linear-quadratic” (LQR) and “Bang-Bang” regulators can be designed. The proposed procedure is illustrated by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riewe, F.: Noncoservative Hamiltonian and Lagrangian mechanics. Phys. Rev. E 53(2), 53–63 (1996)

    Article  MathSciNet  Google Scholar 

  2. Atanacković, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)

    Article  MATH  Google Scholar 

  3. Atanacković, T.M.: On a distributed derivative model of a viscoelastic body. C. R., Méc. 331, 687–692 (2003)

    Article  MATH  Google Scholar 

  4. Sabatier, J., Agrawal, O., Tenreiro Machado, J.A. (eds.) Advances in Fractional Calculus. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. Margin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  6. Mainardy, F.: On the initial value problem for the fractional diffusion-wave equation. In: Rionero, S., Ruggeri, T. (eds.): Waves and Stability in Continuous Media. World Scientific, Singapore (1995)

    Google Scholar 

  7. Mainardy, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space–time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  Google Scholar 

  8. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MATH  Google Scholar 

  9. Metzler, R., Nonnenmacher, T.F.: Fractional diffusion, waiting-time distributions, and Cattaneo-type equations. Phys. Rev. E 57(6), 6–13 (1998)

    Article  MathSciNet  Google Scholar 

  10. Metzler, R., Klafter, J.: Boundary value problems for fractional diffusion equations. Physica A 278, 107–125 (2000)

    Article  MathSciNet  Google Scholar 

  11. Atanacković, T.M., Pilipović, S., Zorica, D.: A diffusion wave equation with two fractional derivatives of different order. J. Phys. A 40, 5319–5333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ray, W.H., Lainiotis, D.G. (eds.): Distributed Parameter Systems—Identification, Estimation and Control. Marcel Dekker, New York (1978)

    MATH  Google Scholar 

  13. Tzafestas, S.G. (ed.): Distributed Parameter Control Systems—Theory and Application. Pergamon Press, Elmsford (1982)

    MATH  Google Scholar 

  14. Fatorini, H.O.: Infinite Dimensional Linear Control Systems—The Time-Optimal and Norm-Optimal Problems. Elsevier, Amsterdam (2005)

    Google Scholar 

  15. Liang, J., Chen, Y., Fullmer, R.: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations. Nonlinear Dyn. 38, 339–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MATH  Google Scholar 

  17. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A 39, 10375–10384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Atanacković, T.M., Konjik, S., Pilipović, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A 41, 095201 (2008)

    Article  MathSciNet  Google Scholar 

  19. Atanacković, T.M., Stanković, B.: On a class of differential equations with left and right fractional derivatives. Z. Angew. Math. Mech. 87, 537–546 (2007)

    Article  MATH  Google Scholar 

  20. Atanacković, T.M., Stanković, B.: On a differential equation with left and right fractional derivatives. Fract. Calc. Appl. Anal. 10, 138–150 (2007)

    Google Scholar 

  21. Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13(9–10), 1269–1281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)

    Article  MathSciNet  Google Scholar 

  23. Agrawal, O.P.: A numerical scheme for initial compliance and creep response of a system. Mech. Res. Commun. 36, 444–451 (2009)

    Article  Google Scholar 

  24. Atanacković, T.M., Stanković, B.: On a numerical scheme for solving differential equations of fractional order. Mech. Res. Commun. 35, 429–438 (2008)

    Article  Google Scholar 

  25. Jeličić, Z.D., Petrovački, N.: Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidiscipl. Optim. 38, 571–581 (2009)

    Article  Google Scholar 

  26. Petrovački, D.P.: Optimal control of a heat conduction problem. J. Appl. Math. Phys. 26, 436–480 (1975)

    Google Scholar 

  27. Petrovački, D.P.: The minimum time problem for a class of non-linear distributed parameter systems. Int. J. Control 32(1), 51–62 (1980)

    Article  MATH  Google Scholar 

  28. Vujanović, B.D., Atanacković, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  29. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin (1989)

    MATH  Google Scholar 

  30. Vujanović, B.D., Spasić, D.T.: Metodi optimizacije. Univerzitet u Novom Sadu, Fakultet tehničkih nauka (1997)

  31. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan R. Rapaić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapaić, M.R., Jeličić, Z.D. Optimal control of a class of fractional heat diffusion systems. Nonlinear Dyn 62, 39–51 (2010). https://doi.org/10.1007/s11071-010-9697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9697-3

Keywords

Navigation