Skip to main content
Log in

Nonlinear normal modes and band zones in granular chains with no pre-compression

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study standing waves (nonlinear normal modes—NNMs) and band zones in finite granular chains composed of spherical granular beads in Hertzian contact, with fixed boundary conditions. Although these are homogeneous dynamical systems in the notation of Rosenberg (Adv. Appl. Mech. 9:155–242, 1966), we show that the discontinuous nature of the dynamics leads to interesting effects such as separation between beads, NNMs that appear as traveling waves (these are characterized as pseudo-waves), and localization phenomena. In the limit of infinite extent, we study band zones, i.e., pass and stop bands in the frequency–energy plane of these dynamical systems, and classify the essentially nonlinear responses that occur in these bands. Moreover, we show how the topologies of these bands significantly affect the forced dynamics of these granular media subject to narrowband excitations. This work provides a classification of the coherent (regular) intrinsic dynamics of one-dimensional homogeneous granular chains with no pre-compression, and provides a rigorous theoretical foundation for further systematic study of the dynamics of granular systems, e.g., the effects of disorders or clearances, discrete breathers, nonlinear localized modes, and high-frequency scattering by local disorders. Moreover, it contributes toward the design of granular media as shock protectors, and in the passive mitigation of transmission of unwanted disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyapunov, A.: Probleme generale de la stabilité du mouvement. Ann. Fas. Sci. Toulouse 9, 203–474 (1907)

    Google Scholar 

  2. Pak, C.H., Rosenberg, R.M.: On the existence of normal mode vibrations in nonlinear systems. Q. Appl. Math. 26, 403–416 (1968)

    MATH  MathSciNet  Google Scholar 

  3. Rand, R.H.: Nonlinear normal modes in two-degrees-of-freedom systems. J. Appl. Mech. 38, 561 (1971)

    Article  Google Scholar 

  4. Rosenberg, R.M.: The normal modes of nonlinear n-degrees-of-freedom systems. J. Appl. Mech. 30, 7–14 (1962)

    Google Scholar 

  5. Rosenberg, R.M., Kuo, J.: Nonsimilar normal mode vibrations of nonlinear systems having two degrees of freedom. J. Appl. Mech. 31, 283–290 (1964)

    MathSciNet  Google Scholar 

  6. Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    Article  Google Scholar 

  7. Vakakis, A.F., Manevitch, L.I., Mikhlin, Yu., Pilipchuck, V., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  8. Vakakis, A.F.: Analysis and identification of linear and nonlinear normal modes in vibrating systems, Ph.D. Thesis, California Institute of Technology, Pasadena, California (1990)

  9. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  10. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73, 026610 (2006)

    Article  Google Scholar 

  11. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  Google Scholar 

  12. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

    Article  MathSciNet  Google Scholar 

  13. Nesterenko, V.F., Daraio, C., Herbold, E.B., Jin, S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702 (2005)

    Article  Google Scholar 

  14. Herbold, E.B., Kim, J., Nesterenko, V.F., Wang, S.Y., Daraio, C.: Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap. Acta Mech. 205, 85 (2009)

    Article  MATH  Google Scholar 

  15. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  16. Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no pre-compression. Phys. Rev. E 82, 026603 (2009)

    Article  Google Scholar 

  17. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes. Part II. Toward a practical computation using numerical continuation. Mech. Syst. Signal Process. 23, 195–216 (2009)

    Article  Google Scholar 

  18. Theocharis, G., Kavousanakis, M., Kevrekidis, P.G., Daraio, C., Porter, M.A., Kevrekidis, I.G.: Localized breathing modes in granular crystals with defects. arXiv:0906.4094v1 [nlin.PS] (2009)

  19. Boechler, N., Daraio, C.: An experimental investigation of acoustic band gaps and localization in granular elastic chains. In: Proceedings of the ASME, 2009 International Design Engineering Technical Conferences & Biennial Conference on Mechanical Vibration and Noise IDETC/CIE Aug. 30–Sept. 2, 2009, San Diego, California

  20. Mead, D.J.: Wave propagation and natural modes in periodic systems. I. Monocoupled systems. J. Sound Vib. 40, 1–18 (1975)

    Article  MATH  Google Scholar 

  21. Vakakis, A.F., Cetinkaya, C.: Dispersion of stress waves in one-dimensional semi-infinite, weakly coupled layered systems. Int. J. Solids Struct. 33(28), 4195–4213 (1996)

    Article  MATH  Google Scholar 

  22. Norris, A.W.: Waves in periodically layered media: a comparison of two theories. SIAM J. Appl. Math. 53, 1195–1209 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Velo, A.P., Gazonas, G.A., Ameya, T.: z-Transform methods for the optimal design of one-dimensional layered elastic media. SIAM J. Appl. Math. 70(3), 762–788 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vakakis, A.F., King, M.E.: Nonlinear wave transmission in a monocoupled elastic periodic system. J. Acoust. Soc. Am. 98(3), 1534–1546 (1995)

    Article  Google Scholar 

  25. Cetinkaya, C., Vakakis, A.F., El-Raheb, M.: Axisymmetric elastic waves in weakly coupled layered media of infinite radial extent. J. Sound Vib. 182(2), 283–302 (1995)

    Article  Google Scholar 

  26. Vakakis, A.F., King, M.E.: Resonant oscillations of a weakly coupled, nonlinear layered system. Acta Mech. 128, 59–80 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jiang, D., Pierre, C., Shaw, S.W.: Large-amplitude nonlinear normal modes of piecewise linear systems. J. Sound Vib. 272(3–5), 869–891 (2004)

    Article  MathSciNet  Google Scholar 

  28. Chen, S., Shaw, S.W.: Normal modes for piecewise linear vibratory systems. Nonlinear Dyn. 10, 135–163 (1996)

    Article  MathSciNet  Google Scholar 

  29. Zuo, L., Curnier, A.: Non-linear real and complex modes of conewise linear systems. J. Sound Vib. 174, 289–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Jayaprakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F. et al. Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn 63, 359–385 (2011). https://doi.org/10.1007/s11071-010-9809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9809-0

Keywords

Navigation