Skip to main content
Log in

Nonlinear modelling of chemostat model with time delay and impulsive effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a chemostat model with periodically pulsed input and time delay is considered. We show that there exists a microorganism-free periodic solution, which is globally attractive when the period of impulsive effect is less than some critical value. Further, we give the sufficient conditions for the permanence of the model with time delay and pulsed input. We show that time delay, impulsive input can bring different effects on the dynamic behavior of the model by numerical analysis. We show that impulsive effect destroys the equilibria of the unforced continuous system and initiates periodic solution. Our results can be applied to culture the microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wanng, L., Wolkowicz, G.S.K.: A delayed chemostat with general nonmonotone response functions and differential removal rates. J. Math. Anal. Appl. 321, 452–468 (2006)

    Article  MathSciNet  Google Scholar 

  2. Rehim, H., Teng, Z.: Permanence average persistence and extinction in non-autonomous single-species growth chemostat models. Adv. Complex Syst. 9(1–2), 41–58 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lakmeche, A., Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn. Contin. Discrete Impuls. Syst. 7, 165–87 (2000)

    MathSciNet  Google Scholar 

  4. Smith, H.L.: Competitive coexistence in an oscillating chemostat. SIAM J. Appl. Math. 18, 498–522 (1981)

    Article  Google Scholar 

  5. Lenas, P., Pavlous, S.: Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate. Math. Biosci. 129, 111–142 (1995)

    Article  MATH  Google Scholar 

  6. Pilyugin, S.S., Waltman, P.: Competition in the unstirred chemostat with periodic input and washout. SIAM J. Appl. Math. 59, 1157–77 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cunningham, A., Nisbet, R.M.: Transients oscillations in continuous culture. In: Mathematics in Microbiology. CRC Press, Boca Raton (1983)

    Google Scholar 

  8. Cushing, J.M.: Integra-Differential Equations and Delay Models in Population Dynamics. Springer, Heidelberg (1977)

    Google Scholar 

  9. Freedman, H.I., Sree Hari Rao, V.: The trade-off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45, 991–1004 (1983)

    MATH  MathSciNet  Google Scholar 

  10. Freedman, H.I., Sree Hari Rao, V., Jayalakshmi, K.: Stability, persistence and extinction in a predator-prey system with discrete and continuous time delays. In: WSSIAA, vol. 1, 221–238. World Scientific, Singapore (1993)

    Google Scholar 

  11. Gopalamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  12. Kuang, Y.: Delay differential equations with applications in population dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  13. Macdonald, N.: Time Lags in Biological Models. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  14. Nisbet, R.M., Gurney, W.S.C.: Modelling Fluctuating Populations. Wiley, New York (1982)

    MATH  Google Scholar 

  15. Butler, G.J., Hsu, S.B., Waltman, P.: A mathematical models of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45, 435–439 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hale, J., Somolinos, A.S.: Competition for fluctuating nutrient. J. Math. Biol. 9, 255–280 (1980)

    MathSciNet  Google Scholar 

  17. Hsu, S.B.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9, 115–132 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Smith, H.L.: Competitive coexistence in an oscillating chemostat. SIAM J. Appl. Math. 40, 498–521 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wolkowicz, G.S.K., Xia, H., Ruan, S.: Competition in the chemostat: A distributed delay model and its asymptotic behavior. SIAM J. Appl. Math. 57, 1281–310 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Caperon, J.: Time lag in population growth response of Isochrysis galbana to a variable nitrate environment. Ecology 50, 188–192 (1969)

    Article  Google Scholar 

  21. Waltman, P.: Co-existence in chemostat-like models. Rocky Mt. J. Math. 20, 777–807 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bush, A.W., Cook, A.E.: The effect of time delay and growth rate inhibition in the bacterial decomposition of waste water. J. Theor. Biol. 63, 385–395 (1975)

    Article  Google Scholar 

  23. Pang, G.P., Chen, L.S.: A delayed SIRS epidemic model with pulse vaccination. Chaos Solitons Fractals 34(5), 1629–1635 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Z Meng, X., Jiao, J.J., Chen, L.S.: Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination. Chaos Solitons Fractals 40(5), 2114–2125 (2009)

    Article  MathSciNet  Google Scholar 

  25. Pang, G.P., Wang, F.Y., Chen, L.S.: Analysis of a Monod-Haldene type food chain chemostat with periodically varying substrate. Chaos Solitons Fractals 38(3), 731–742 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hui, J., Chen, L.S.: Dynamic complexities in a periodically pulsed ratio-dependent predator-prey ecosystem modeled on a chemostat. Chaos Solitons Fractals 29(2), 407–416 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhao, Z., Song, X.Y.: On the study of chemostat model with pulsed in a polluted environment. Discrete Dyn. Nature Soc. 2007, 90158 (2007), 12 pages

    MathSciNet  Google Scholar 

  28. Berezansky, L., Braveman, E.: Linearized oscillation theory for a nonlinear delay impulsive equation. J. Comput. Appl. Math. 161, 477–495 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu, X., Ballinger, G.: Boundedness for impulsive delay differential equations and applications to population growth models. Nonlinear Anal. 53, 1041–1062 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yan, J.: Stability for impulsive delay differential equations. Nonlinear Anal. 63, 66–80 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lakshmikanthan, V., Bainov, D.D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Google Scholar 

  32. Kuang, Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press, San Diego (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhao.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 10971001) and Henan Science and Technology Department (No. 082102140025 and 092300410228).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Zhang, X. & Chen, L. Nonlinear modelling of chemostat model with time delay and impulsive effect. Nonlinear Dyn 63, 95–104 (2011). https://doi.org/10.1007/s11071-010-9788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9788-1

Keywords

Navigation