Skip to main content
Log in

Computational optimal control for the time fractional convection-diffusion-reaction system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper proposes a numerical approximation method for computational optimal control of a time fractional convection-diffusion-reaction system. The proposed method involves discretizing the spatial domain by finite element method, approximating the admissible controls by control parameterization, and then obtaining an optimal parameter selection problem which can be solved by numerical optimization algorithms such as sequential quadratic programming. Specifically, an implicit finite difference method is employed to solve the time fractional system, and the sensitivity method for gradient computation in integer order optimal control problems is adjusted to the fractional order case. Simulation results demonstrate the validity and accuracy of the proposed numerical approximation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104, 1349–1387 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Longjin, L., Ren, F., Qiu, W.: The application of fractional derivatives in stochastic models driven by fractional Brownian motion. Phys. A: Stat. Mech. Appl. 389, 4809–4818 (2010)

    Article  MathSciNet  Google Scholar 

  4. Guo, S., Mei, L., Li, Y., Sun, Y.: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376, 407–411 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Langlands, T., Henry, B.I.: Fractional chemotaxis diffusion equations. Phys. Rev. E 81, 051102 (2010)

    Article  MathSciNet  Google Scholar 

  6. Zares-Ram, R.C.A., Rez, I., Espinosa-Paredes, G.: Time-fractional telegraph equation for hydrogen diffusion during severe accident in BWRs. J. King Saud Univ. Sci. 28, 21–28 (2016)

    Article  Google Scholar 

  7. Zamani, M., Karimi-Ghartemani, M., Sadati, N.: FOPID controller design for robust performance using particle swarm optimization. Fract. Calc. Appl. Anal. 10, 169–187 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shirzadi, A., Ling, L., Abbasbandy, S.: Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Eng. Anal. Bound. Elem. 36, 1522–1527 (2012)

  11. Chen-Charpentier, B.M., Kojouharov, H.V.: An unconditionally positivity preserving scheme for advection-diffusion reaction equations. Math. Comput. Model. 57, 2177–2185 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Qian, L., Cai, H., Guo, R., Feng, X.: The characteristic variational multiscale method for convection-dominated convection-diffusion-reaction problems. Int. J. Heat Mass Transf. 72, 461–469 (2014)

    Article  Google Scholar 

  13. Cui, M.: Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Behroozifar, M., Sazmand, A.: An approximate solution based on Jacobi polynomials for time-fractional convection-diffusion equation. Appl. Math. Comput. 296, 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  15. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)

    Article  MathSciNet  Google Scholar 

  16. Chen, H., Lu, S., Chen, W.: Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J. Comput. Phys. 315, 84–97 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  17. Teo, K.L., Goh, C., Wong, K.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, Harlow (1991)

    MATH  Google Scholar 

  18. Loxton, R.C., Teo, K.L., Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923–2929 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, M., Christofides, P.D.: Optimal control of diffusion-convection-reaction processes using reduced-order models. Comput. Chem. Eng. 32, 2123–2135 (2008)

    Article  Google Scholar 

  20. Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10, 275–309 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Akman, T.U.G.B., Karas, B.U.L., Zen, O.: Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations. J. Comput. Appl. Math. 272, 41–56 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lube, G., Tews, B.: Optimal control of singularly perturbed advection-diffusion-reaction problems. Math. Models Methods Appl. Sci. 20, 375–395 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ng, J., Dubljevic, S.: Optimal boundary control of a diffusion-convection-reaction PDE model with time-dependent spatial domain: Czochralski crystal growth process. Chem. Eng. Sci. 67, 111–119 (2012)

    Article  Google Scholar 

  24. Aksikas, I., Mohammadi, L., Forbes, J.F., Belhamadia, Y., Dubljevic, S.: Optimal control of an advection-dominated catalytic fixed-bed reactor with catalyst deactivation. J. Process Control 23, 1508–1514 (2013)

    Article  Google Scholar 

  25. Yu, X., Ren, Z., Xu, C.: An approximation for the boundary optimal control problem of a heat equation defined in a variable domain. Chin. Phys. B 23, 76–82 (2014)

    Google Scholar 

  26. Chen, T., Ren, Z., Xu, C., Loxton, R.: Optimal boundary control for water hammer suppression in fluid transmission pipelines. Comput. Math. Appl. 69, 275–290 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chen, T., Xu, C., Lin, Q., Loxton, R., Teo, K.L.: Water hammer mitigation via PDE-constrained optimization. Control Eng. Pract. 45, 54–63 (2015)

    Article  Google Scholar 

  28. Ren, Z., Xu, C., Lin, Q., Loxton, R., Teo, K.L.: Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas. Commun. Nonlinear Sci. Numer. Simul. 32, 31–48 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mophou, G.M.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, 68–78 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Toledo-Hernandez, R., Rico-Ramirez, V., Rico-Martinez, R., Hernandez-Castro, S., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: numerical solution of fractional optimal control problems. Chem. Eng. Sci. 117, 239–247 (2014)

    Article  Google Scholar 

  31. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S., Abdelkawy, M.A.: An accurate numerical technique for solving fractional optimal control problems. Differ. Equ. 15, 23 (2015)

    MATH  Google Scholar 

  32. Du, N., Wang, H., Liu, W.: A fast gradient projection method for a constrained fractional optimal control. J. Sci. Comput. 68, 1–20 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  33. Javad Sabouri, S.A.P.M, Effati, K.: A neural network approach for solving a class of fractional optimal control problems. Neural Process. Lett. 45, 59–74 (2017)

  34. Tang, X., Liu, Z., Wang, X.: Integral fractional pseudospectral methods for solving fractional optimal control problems. Automatica 62, 304–311 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhou, Z., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 71, 301–318 (2016)

    Article  MathSciNet  Google Scholar 

  36. Johnson, C.: Numerical solution of partial differential equations by the finite element method, Courier Corporation (2012)

  37. Li, E.S.U.: Lecture Notes on Finite Element Methods for Partial Differential Equations. University of Oxford, Mathematical Institute, Oxford (2012)

    Google Scholar 

  38. Zhou, Q., Liu, R.: Strategy optimization of resource scheduling based on cluster rendering. Clust. Comput. 19(4), 2109–2117 (2016)

    Article  Google Scholar 

  39. Zhou, Q., Luo, J.: The service quality evaluation of ecologic economy systems using simulation computing. Comput. Syst. Sci. Eng. 31(6), 453–460 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of Zhejiang (Grant No. LY17A010020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunxiong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhu, Q. & Lv, L. Computational optimal control for the time fractional convection-diffusion-reaction system. Cluster Comput 20, 2943–2953 (2017). https://doi.org/10.1007/s10586-017-0929-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0929-x

Keywords

Navigation