Skip to main content

Advertisement

Log in

Catastrophe analysis of cylindrical lithium ion battery

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The thermal runaway reactions in a lithium ion battery cause its temperature and pressure to increase sharply and even as a result explode in the worst conditions. This kind of explosion is thought of as a catastrophe phenomenon. The energy conservation equation for the discharging process of lithium ion battery was produced, to disclose the catastrophic mechanism of thermal runaway explosion. By the dimensionless method, the swallowtail catastrophe potential function of the lithium ion battery was obtained. The control variables of the potential function were discussed further and the thermal runaway zones and non-thermal runaway zones were obtained. The results indicate that the thermal runaway of lithium ion battery is a swallowtail catastrophe in essence, and thus the control methods of lithium ion battery thermal runaway can be designed from the view point of catastrophes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wakihara, M.: Recent developments in lithium ion batteries. Mater. Sci. Eng. R 33, 109–134 (2001)

    Article  Google Scholar 

  2. Jacoby, M.: Burning batteries. Chem. Eng. News 85, 26–28 (2007)

    Google Scholar 

  3. Lu, Z.R., Yang, L., Guo, Y.J.: Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. J. Power Sources 156, 555–559 (2006)

    Article  Google Scholar 

  4. Dahn, J.R., Fuller, E.W., Obrovac, M., Vonsacken, U.: Thermal-stability of Lixcoo2, Lixnio2 and Lambda-Mno2 and consequences for the safety of Li-ion cells. Solid State Ion. 69, 265–270 (1994)

    Article  Google Scholar 

  5. Baba, Y., Okada, S., Yamaki, J.: Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ion. 148, 311–316 (2002)

    Article  Google Scholar 

  6. Capiglia, C., Yang, J., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O.: DSC study on the thermal stability of solid polymer electrolyte cells. J. Power Sources 119, 826–832 (2003)

    Article  Google Scholar 

  7. Roth, E.P., Doughty, D.H., Franklin, J.: DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J. Power Sources 134, 222–234 (2004)

    Article  Google Scholar 

  8. Ravdel, B., Abraham, K.M., Gitzendanner, R., DiCarlo, J., Lucht, B., Campion, C.: Thermal stability of lithium-ion battery electrolytes. J. Power Sources 119, 805–810 (2003)

    Article  Google Scholar 

  9. MacNeil, D.D., Dahn, J.R.: Can an electrolyte for lithium-ion batteries be too stable? J. Electrochem. Soc. 150, A21–A28 (2003)

    Article  Google Scholar 

  10. MacNeil, D.D., Lu, Z.H., Chen, Z.H., Dahn, J.R.: A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sources 108, 8–14 (2002)

    Article  Google Scholar 

  11. Yang, H., Bang, H., Amine, K., Prakash, J.: Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J. Electrochem. Soc. 152, A73–A79 (2005)

    Article  Google Scholar 

  12. Wang, Y.D., Zaghib, K., Guerfi, A., Bazito, F.F.C., Torresi, R.M., Dahn, J.R.: Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim. Acta 52, 6346–6352 (2007)

    Article  Google Scholar 

  13. Holzapfel, M., Alloin, F., Yazami, R.: Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim. Acta 49, 581–589 (2004)

    Article  Google Scholar 

  14. Jiang, J., Dahn, J.R.: Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2. Electrochim. Acta 49, 2661–2666 (2004)

    Article  Google Scholar 

  15. Jiang, J.W., Dahn, J.R.: Effects of solvents and salts on the thermal stability of LiC6. Electrochim. Acta 49, 4599–4604 (2004)

    Article  Google Scholar 

  16. Maleki, H., Howard, J.N.: Role of the cathode and anode in heat generation of Li-ion cells as a function of state of charge. J. Power Sources 137, 117–127 (2004)

    Google Scholar 

  17. Zhao, L.W., Watanabe, I., Doi, T., Okada, S., Yamaki, J.: TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries. J. Power Sources 161, 1275–1280 (2006)

    Article  Google Scholar 

  18. Watanabe, I., Yamaki, J.: Thermalgravimetry-mass spectrometry studies on the thermal stability of graphite anodes with electrolyte in lithium-ion battery. J. Power Sources 153, 402–404 (2006)

    Article  Google Scholar 

  19. Rajendran, S., Sivakumar, M., Subadevi, R.: Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J. Power Sources 124, 225–230 (2003)

    Article  Google Scholar 

  20. Wang, Q.S., Sun, J.H., Yao, X.L., Chen, C.H.: Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries. J. Electrochem. Soc. 153, A329–A333 (2006)

    Article  Google Scholar 

  21. Wang, Q.S., Sun, J.H., Yao, X.L., Chen, C.H.: C80 calorimeter studies of the thermal behavior of LiPF6 solutions. J. Solut. Chem. 35, 179–189 (2006)

    Article  Google Scholar 

  22. Wang, Q.S., Sun, J.H., Yao, X.L., Chen, C.H.: Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes. J. Loss Prev. Process. Ind. 19, 561–569 (2006)

    Article  Google Scholar 

  23. Wang, Q.S., Sun, J.H., Yao, X.L., Chen, C.H.: Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries. Thermochim. Acta 437, 12–16 (2005)

    Article  Google Scholar 

  24. Wang, Q.S., Sun, J.H., Lu, S.X., Yao, X.L., Chen, C.H.: Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction. Solid State Ion. 177, 137–140 (2006)

    Article  Google Scholar 

  25. Wang, Q.S., Sun, J.H., Chu, G.Q., Yao, X.L., Chen, C.H.: Effect of LiPF6 on the thermal behaviors of four organic solvents for lithium ion batteries. J. Therm. Anal. Calorim. 89, 245–250 (2007)

    Article  Google Scholar 

  26. Wang, Q.S., Sun, J.H., Chen, C.H.: Thermal stability of delithiated LiMn2O4 with electrolyte for lithium-ion batteries. J. Electrochem. Soc. 154, A263–A267 (2007)

    Article  Google Scholar 

  27. Wang, Q.S., Sun, J.H., Chen, C.H.: Thermal stability of LiPF6/EC+DMC+EMC electrolyte for lithium ion batteries. Rare Met. 25, 94–99 (2006)

    Article  Google Scholar 

  28. Chen, Y.F., Evans, J.W.: Thermal analysis of lithium-ion batteries. J. Electrochem. Soc. 143, 2708–2712 (1996)

    Article  Google Scholar 

  29. Hatchard, T.D., MacNeil, D.D., Basu, A., Dahn, J.R.: Thermal model of cylindrical and prismatic lithium-ion cells. J. Electrochem. Soc. 148, A755–A761 (2001)

    Article  Google Scholar 

  30. Al-Hallaj, S., Maleki, H., Hong, J.S., Selman, J.R.: Thermal modeling and design considerations of lithium-ion batteries. J. Power Sources 83, 1–8 (1999)

    Article  Google Scholar 

  31. Al-Hallaj, S., Selman, J.R.: Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J. Power Sources 110, 341–348 (2002)

    Article  Google Scholar 

  32. Kim, G.H., Pesaran, A., Spotnitz, R.: A three-dimensional thermal abuse model for lithium-ion cells. J. Power Sources 170, 476–489 (2007)

    Article  Google Scholar 

  33. Doughty, D.H., Butler, P.C., Jungst, R.G., Roth, E.P.: Lithium battery thermal models. J. Power Sources 110, 357–363 (2002)

    Article  Google Scholar 

  34. Balakrishnan, P.G., Ramesh, R., Kumar, T.P.: Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006)

    Google Scholar 

  35. Chen, Y.H., Tang, Z.Y., Lu, X.H., Tan, C.Y.: Research of explosion mechanism of lithium-ion battery. Prog. Chem. 18, 823–831 (2006)

    Google Scholar 

  36. Wang, Q.S., Sun, J.H., Yao, X.L., Chen, C.H.: 4-Isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte. Electrochem. Solid. State Lett. 8, A467–A470 (2005)

    Article  Google Scholar 

  37. Yao, X.L., Xie, S., Chen, C.H., Wang, Q.S., Sun, J.H., Li, Y.L., Lu, S.X.: Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. J. Power Sources 144, 170–175 (2005)

    Article  Google Scholar 

  38. Doughty, D.H., Roth, E.P., Crafts, C.C., Nagasubramanian, G., Henriksen, G., Amine, K.: Effects of additives on thermal stability of Li ion cells. J. Power Sources 146, 116–120 (2005)

    Article  Google Scholar 

  39. Wang, Q.S., Sun, J.H., Chen, C.H.: Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries. J. Power Sources 162, 1363–1366 (2006)

    Article  Google Scholar 

  40. Hyung, Y.E., Vissers, D.R., Amine, K.: Flame-retardant additives for lithium-ion batteries. J. Power Sources 119, 383–387 (2003)

    Article  Google Scholar 

  41. Mandal, B.K., Padhi, A.K., Shi, Z., Chakraborty, S., Filler, R.: Thermal runaway inhibitors for lithium battery electrolytes. J. Power Sources 161, 1341–1345 (2006)

    Article  Google Scholar 

  42. Arnold, V.I.: Catastrophe Theory. Springer, Berlin (1984)

    MATH  Google Scholar 

  43. He, P., Zhao, Z.D.: Catastrophe Theory and Application. Dalian University of Technology Press, Dalian (1989)

    Google Scholar 

  44. Vaidyanathan, H., Kelly, W.H., Rao, G.: Heat dissipation in a lithium ion cell. J. Power Sources 93, 112–122 (2001)

    Article  Google Scholar 

  45. Sun, J.H., Li, Y.F., Hasegawa, K.: A study of self–accelerating decomposition temperature (SADT) using reaction calorimetry. J. Loss Prev. Process Ind. 14, 331–336 (2001)

    Article  Google Scholar 

  46. Weng, W.G., Fan, W.C.: Study on catastrophe behavior of backdraf t in building fires. Acta Math. Sci. A 22, 564–570 (2002)

    MATH  MathSciNet  Google Scholar 

  47. Weng, W.G., Fan, W.C.: Catastrophe analysis of flashover in building fires. Fire Saf. Sci. 12, 51–57 (2003)

    Google Scholar 

  48. Onda, K., Ohshima, T., Nakayama, M., Fukuda, K., Araki, T.: Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J. Power Sources 158, 535–542 (2006)

    Article  Google Scholar 

  49. Hatchard, T.D., MacNeil, D.D., Stevens, D.A., Christensen, L., Dahn, J.R.: Importance of heat transfer by radiation in Li-ion batteries during thermal abuse. Electrochem. Solid State Lett. 3, 305–308 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Ping, P. & Sun, J. Catastrophe analysis of cylindrical lithium ion battery. Nonlinear Dyn 61, 763–772 (2010). https://doi.org/10.1007/s11071-010-9685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9685-7

Keywords

Navigation